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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War 11
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBrinGE.
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Preface

N THE engineering application of low-frequency currents, an impor-

tant step forward was the development of the impedance concept
and its utilization through the theory of linear networks. It was almost
inevitable that this concept would be generalized and become useful in
the application of microwaves. This volume is devoted to an exposition
of the impedance concept and to the equivalent circuits of microwave
devices. It is the intention to emphasize the underlying principles of
these equivalent circuits and the results that may be obtained by their
use. Specific devices are not discussed except as illustrations of the
general methods under consideration. These devices and the details of
the design procedure are treated in other volumes of this series. The
solutions of the boundary-value problems which give the susceptances
of microwave-circuit elements are likewise omitted. The results of such
caleulations that have been performed up to the present time are com-
piled in Vol. 10, the Waveguide Handbook, and these results are used
freely. Although the work of the Radiation Laboratory at MIT was
the development of military radar equipment, the principles discussed
in this volume can be applied to microwave equipment. of all kinds.

THE AUTHORS
New Haven, Conn.,

February, 1947.
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CHAPTER 1
INTRODUCTION

By E. M. PurceELL

1-1. Microwaves.—The microwave region of the electromagnetic
spectrum is commonly taken to include frequencies of 10° cycles per second
and higher. The upper frequency limit exists only as an active frontier
lying, at the time of writing, not far below 101! cycles per second. It is
not necessary here to attempt to-fix the boundaries more precisely.
Instead, it may be asked why it is profitable and proper to single out for
special treatment this section of the r-f spectrum. The answer to this
question will provide a broad definition of ““microwaves” and may serve
to indicate the scope and purpose of this book.

The distinguishing features of this region of the spectrum are most
striking from the point of view of the electrical engineer. Indeed, from
the point of view of the physicist concerned with the properties of matter
and radiation, boundaries such as those suggested above would appear
wholly arbitrary. If he were obliged to choose a name for the region, his
choice might suggest very long, rather than very short, wavelengths. In
the centimeter wavelength range, the interaction of radiation with matter
appears to afford, with certain notable exceptions, less abundant evidence
of the structure of molecules and atoms than the spectroscopist finds at
much shorter wavelengths. On the other hand, in the study of the dielec-
tric constants and magnetic permeabilities of matter in the bulk no special
distinction is made between microwave frequencies and much lower radio
frequencies. This is not to suggest that the microwave region is unin-
teresting to the physicist but rather that its aspect and extent are various,
depending on the nature of the problem at hand. The engineer, however,
is concerned with the techniques of producing, controlling, transmitting,
and detecting electromagnetic energy, and in the microwave region these
techniques take on a novel and characteristic form.

The low-frequency end of the microwave spectrum marks roughly
the point at which many of the familiar techniques of the radio-frequency
art become difficult or ineffective. Perhaps fortuitously, perhaps inevita-
bly, approximately at this point those methods and devices which exploit
the shortness of the wavelength become practical and effective. A simple
resonant circuit, for example, for a frequency of 30 Mec/sec might consist
of a coil and condenser, as in Fig. 1-1a.

1



2 INTRODUCTION [Swc. 1-1

It is not hard to show that if all linear dimensions of this circuit were
reduced by a factor of 100, the resonant frequency would be increased by
the same factor, to 3000 Mc¢,sec.  This method of scaling is not practical
for reasons other than the ridiculously small size of the resulting object.
In the circuit shown in Fig. 1-1b, the resistance of the wire forming the
coil is ten times as effective in damping the oscillations of the circuit;
that is, the Q of circuit b is one-tenth that of circuit a. Moreover, the
amount of energy that can be stored in the circuit without dielectric
breakdown—often an important consideration—is smaller for circuit b

(®) )

Fig. 1-1.—Resonant circuits at low frequencies and at microwave frequencies.

by a factor of about 1000. It would be better, of course, to reduce the
number of turns in the coil, as shown in Fig. 1-1¢ where the inductance of
a single turn is combined with the capacitance of a gap of reasonable
size. One further step leads to the reduction of the area of the single
turn and to the widening of the condenser gap, as shown in Fig. 1-1d.

Thus the disadvantages of circuit b have been overcome to a con-
siderable degree. The circuit d differs from b, however, in one important
respect: its physical dimensions are not small compared with its resonant
wavelength. Consequently, the circuit, if excited, will lose energy by
radiation; the condenser now acts as an antenna, and the circuit behaves
as if a series resistance had been inserted to absorb energy and damp the
oscillations. This loss of energy can be avoided by enclosing the entire
circuit within conducting walls, which might be done in the manner
shown in Fig. 1-1e where the two conductors of circuit d have become
coaxial cylinders which, provided certain requirements on the thickness
and conductivity of the walls are met, confine all electric and magnetic
fields to the region between the two cylinders. Another possible solution
is shown in Fig. 1-1f. This resonant circuit is simply a hollow metal
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cylinder. It will merely be asserted here that if the dimensions. of the
cylinder are correctly chosen, the cylindrical cavity will display an elec-
trical resonance at the desired frequency.

The forms of the resonant cireuits e and f are characteristic of micro-
wave devieces, which are usually distinguished by two features: (1) the
physical size of the circuit elements is comparable with the wavelength
involved, and (2) the electromagnetic fields are totally confined within
conducting walls, except where it is desired that energy be radiated into
space. As has already been suggested, the second of these features is an
unavoidable consequence of the first. It is worth remarking that the
features of the circuit of Fig. 1-15 which made it impractical in the micro-
wave region and which led to devices comparable to a wavelength in size
will eventually be encountered again as higher and higher frequencies are
reached. It will no longer be possible, even by the use of microwave
techniques, to design circuits of convenient physical size that permit
transmission of high power or storage of much energy or that have
reasonably low loss. These difficulties are not equally fundamental, nor
will they necessarily become acute at the same point in the spectrum.
Nevertheless, considerations of this sort will ultimately determine the
practical upper frequency limit of what is here called the microwave
region and will stimulate the search for other methods of handling electro-
magnetic energy.

In this book, then, the word “mierowave” will be used to imply, not
necessarily a particular range of frequencies, but a characteristic tech-
nigue and a point of view. A resonator of the form of Fig. 1-1f comes
within the scope of this book, even if it is 20 ft in diameter, with a cor-
responding fundamental resonant frequency of 40 Mc/sec. It may be
regarded as more or less accidental that the methods of analysis and
measurement to be discussed find their widest application at centimeter
and millimeter wavelengths.

1.2. Microwave Circuits.—The example of the resonant circuit, dis-
cussed above in rather oversimplified language, will already have sug-
gested to the reader that the application of the ordinary low-frequency
terminology of ¢nductance and capacitance (and even the word circuit
i:self) to the objects of Fig. 1-1d, e, and f is of uncertain validity. In
the progression from circuits @ and b through to f, the concepts of capac-
itance and inductance lose their identity. In the hairpin-shaped reso-
nator d, for instance, although it is both useful and meaningful to regard
one end of the structure as a condenser and the other as an inductance,
these concepts cannot be made quantitative except by an arbitrary and
artificial convention. Inductance and capacitance are thoroughly dis-
guised in the cylindrical resonator f. To a varying extent, the notions of
current, voltage, and resistance have likewise lost their uniqueness.
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Evidently, if the electrical properties of such structures are to be investi-
gated, a direct analysis of the electromagnetic field must be made.

In the study of low-frequency circuits, it is possible to avoid an
analysis of the field only because all relevant properties of a circuit ele-
ment, such as a coil or condenser, can be described by one or two num-
bers, and different elements can be combined in various ways without
impairing the validity of the description. = A simple coil ischaracterized
by two quantities: inductance and resistance. These two quantities
suffice to determine, at any frequency, the relation between the current
flowing at the terminals of the coil and the voltage between these ter-
minals. Since current and voltage have here a perfectly definite mean-
ing, and since the relation of one to the other at any frequency is all that
need be known, it is not necessary to inquire into the structure of the
complicated magnetic field surrounding the coil unless, on occasion, it is
desired to calculate, rather than to measure, the inductance of the coil.
To be able in this manner to avoid solving Maxwell’s equations for each
new structure saves an enormous amount of work and makes feasible
the analysis of quite complicated circuits. Examples in which this
abbreviated description in terms of inductance, capacitance, and resist-
ance is inadequate are, however, not hard to find, even at ordinary radio
frequencies. The apparent inductance of the coil of Fig. 1-1a would, in
fact, be found to vary noticeably with the frequency. To attribute this
variation, as is the custom, to the effect of the ““ distributed capacitance”
of the windings is to acknowledge that the behavior of the coil and the
associated electromagnetic field cannot be exactly described by a single
number, except at a single frequency. In this special case, for purposes of
circuit analysis, the statement that the coil is a linear device with two
terminals presenting a certain impedance Z is a complete and accurate
description. At microwave frequencies the problem is to analyze an
electrical structure that cannot be broken down into such simple elements
and for which it is not apparent that voltage and current have a unique
meaning,

There is at least one way out of this difficulty. Renouncing all
attempts to describe circuits in terms of voltage, current, and impedance
and restricting the emphasis to those quantities which appear explicitly
in the equations of the electromagnetic field, the generality of Maxwell’s
equations ean be utilized. Each new problem could then be stated as a
boundary-value problem; that is, a solution of Maxwell’s equations satis-
fying certain prescribed conditions appropriate to the particular circuit
at hand would be sought. Although it would be easy to state the prob-
lem in this way, in all but the simplest cases the actual solution would be
hopelessly difficult. Furthermore, any modification of the original cir-
cuit would usually lead to an entirely new problem. It would not be
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possible to combine several elements in a new way and to predict and
understand the behavior of the combination without re-examining in
detail the behavior of each element. If no course other than this were
open, it is likely that knowledge of this art would consist of a meager
collection of completely solved special cases, together with an extensive
assortment of practical devices, designed by trial and error and imper-
fectly understood.

Fortunately, the situation is not nearly so hopeless. In the first
place, the foregoing discussion has overemphasized the complexity of
microwave circuits. If electronic devices and antennas are excluded, the
components of microwave circuits consist chiefly of cavity resonators
and transmission lines of various types. The analysis of the electrical
properties of cavities of various shapes has received much attention in
recent years, especially in connection, with the development of velocity-
modulation tubes. A cavity resonator by itself is a rather simple device,
in the sense that the properties that are usually of interest can be
described by a very few parameters, much as the properties of a low-
frequency resonant circuit are summarized in the statement of the reso-
nant frequency, the value of @, and the impedance at resonance. The
uniform transmission line is perhaps even more familiar to most engineers.
1t will be part of the purpose of this book to show how the standard meth-
ods for the analysis of uniform transmission lines can be applied to the
propagation of energy through hollow pipes of various sorts—in other
words, to generalize the notion of a transmission line. This is not diffi-
cult. Tt can be said that certain isolated elements of the microwave cir-
cuit problem are rather easily handled. The main problem is encountered
when things are connected together or when nonuniformities are intro-
duced into a previously uniform lne. In the following chapters methods
for attacking this problem will be worked out.

The direction that the development of microwave circuit analysis
and design techniques takes is strongly influenced by (1) the kind of
measurements that can be made at microwave frequencies, (2) the nature
of the question to be answered, and (3) the existing well-tried and power-
ful methods for the solution of low-frequency circuit problems, from which
it is, naturally, expedient to borrow as often as possible.

1.3. Microwave Measurements.—At microwave frequencies neither
the circuit elements to be examined nor the measuring apparatus itself
can conveniently be made small compared with a wavelength. This
circumstance calls for new experimental techniques and, more important
for this discussion, shifts attention from the conventional circuit quan-
tities of voltage, current, and resistance to other quantities more directly
accessible to measurement.

At very low frequencies, the voltage between the two conductors of a
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two-wire transmission line might be measured at some point along the
line by connecting an a-c¢ voltmeter, of either the dynamometer or the
iron-vane type, between the two conductors. This becomes impractical
even in the audio-frequency range because of the inductance of the coil
through which the current must flow. It is then necessary to resort to
instruments in which the high-frequency circuit more nearly approaches a
simple resistance element, the current through which is measured by indi-
rect means—perhaps by a thermal effect or by the use of a rectifier.
For example, a fine wire of suitably high resistance might be stretched
between the conductors, its rise in temperature as a result of the Joule heat
developed determined by measuring its d-c resistance, and the result com-
pared with the temperature rise produced in the same environment by a
known direct current passing through the wire. With suitable corrections
for the difference between the d-c resistance of the wire and its resistance
at the frequency in question, this method is sound and reliable up to
frequencies for which the length of the wire is an appreciable fraction of a
wavelength. At frequencies higher than this the inductance of the wire
cannot be neglected, which is another way of saying that the wire itself is
becoming a transmission line. The current that flows in the wire is not
the same at different points along the wire, and it is not surprising to find
that the average temperature rise of the wire is not related in a simple way
to the voltage between the two terminals. Since the wire must neces-
sarily span the distance between the two conductors of the main trans-
mission line, it is clear that a fundamental difficulty stands in the way of
any attempt to devise an instrument which may be legitimately called a
“yoltmeter”” when applied to circuits whose dimensions are comparable
with a wavelength.

The root of the difficulty goes deeper than the foregoing remarks
suggest. The potential difference between two points ordinarily means
the line integral of the electric field strength, (E - ds, taken at one instant
of time, along some path joining the two points. This concept is unique
and useful only if the value of the line integral is independent of the path.
When the path necessarily extends over a distance not small compared
with a wavelength, the line integral is not, in general, independent of the
path, and the significance of the term ‘“voltage” is lost.

This suggests that attention be directed to the electric field. Al-
though it is not common engineering practice to measure the electric
field strength at a point in absolute terms, it is not hard to think of ways
in which it might be done. For instance, a tiny dielectric rod might be
suspended in the field in such a way that the torque tending to line it up
with the field could be directly measured. From a knowledge of the
shape of the rod and the dielectric constant of the material of which it is
made, the value of the field strength in volts per meter could be computed.
Usually it is much more convenient and just as useful to measure the
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ratio of the electric field strengths at two points in a system. A familiar
example of this procedure is the use of a ‘“probe’ to examine the varia-
tion of the field strength along a coaxial transmission line. This probe
usually consists of a short length of auxiliary line, the central conductor of
which projects through a small hole into a slot in the outer conductor of
the transmission line under examination. The other end of the auxiliary
line terminates in some detecting device of a rectifying or of a thermal
type. If precautions are taken to ensure that the probe itself causes
only a negligible disturbance in the line under test, the excitation of the
auxiliary line will be proportional to the field in the main line, which
allows comparison of the field at one location in the main line with the
field at some other point.

In much the same way, relative measurements of the magnetic field
strength can be made, and these, in turn, may be considered to replace
the measurement of current. In microwave circuits, current usually
appears as a volume or surface current density, and whereas these quanti-
ties have a perfectly unique meaning, it is more natural to associate with
the field the related quantities that can be measured.

The usual measurements of field quantities just described are relative
ones. The quantities that are customarily measured in absolute terms
are frequency or wavelength, and power. The r-f power delivered to a
load can be measured directly by calorimetric means; the rate of evolution
of heat in some object is inferred from its temperature rise and may be
indicated in various ways. To be sure, absolute measurements could be
made, ii necessary, of other electrical quantitics. A method .of measur-
ing the electric fierd surength has already been suggested; it would also
be possible in principle and, in certain instances, in practice to measure
the radiation pressure associated with the electromagnetic field at a
boundary. However, it is approximately correct to say that the watt is
the only electrical unit that is of direct importance here.

In the microwave region both frequency and wavelength can be
measured - with great precision. The determination of wavelength
involves the accurate measurement of one or more lengths associated with
a simple resonant circuit such as a cylindrical ecavity or a transmission
line. Microwave frequencies, on the other hand, can be compared
directly with lower frequencies by standard methods of frequency multi-
plication. This rather cumbersome and inflexible method is preferred
where extreme absolute accuracy is required, as in the establishment of
frequency standards. For most work, the measurement of wavelength is
much more convenient. Moreover, the physical quantity wavelength is
directly and intimately associated with the dimensions of the microwave
circuit, and it becomes natural to think in terms of wavelength rather
than frequency. :

Although this book is not directly concerned with the extensive sub-



8 INTRODUCTION [Src. 14

ject of microwave measurement techniques—to which Vol. 11 of the Series
is devoted—the reader will more readily understand the emphasis and
approach adopted in the following chapters if the situation just described
is kept in mind. For example, the term smpedance will be used again and
again to denote a dimensionless ratio (the normalized impedance) and only
rarely to denote the ratio of a potential difference in volts to a current in
amperes.

1.4. The Aims of Microwave Circuit Analysis.—A microwave circuit
is a region enclosed by metallic walls of any shape and communicating
with the exterior only by way of a number of transmission lines or wave-
guides, which may be called the terminals of the circuit. This definition
is not so narrow as it might at first appear, for it is easy to extend the
notion of transmission lines as terminals to include waveguides carrying
many modes, and even antennas.

The final object of microwave circuit analysis, as of low-frequency
circuit analysis, is to provide a complete description of what goes on at
the ferminals of the circuit. Suppose that a given circuit has certain
arbitrarily selected impedances connected to all pairs of terminals but
one. If we are able to predict correctly the impedance that will be
measured at the remaining terminal pair—no matter which terminal
this happens to be and no matter what the frequency—our description of
the circuit can be said to be complete. The methods by which such a
prediction can be made, once the properties of the component parts of
the circuit are given, and the various ways in which the results of the
analysis can be expressed are the main topics of this book.

The properties of the circuit elements will not be derived ab nitio, for
the most part. Such problems involve extensive theoretical calculations.
The results, however, of such calculations, as well as numerous experi-
mental results, are summarized in Vol. 10, the Waveguide Handbook.
The limitation in scope of the present volume is thus characteristic of a
book on network analysis in which one would not expect to find a deriva-
tion of the inductance of a coil of a certain shape. This illustration fails
to suggest, however, the variety and novelty of the problems that can be
solved and the degree to which the usefulness of the methods to be
described here is enhanced by the availability of solutions to those
problems.

One often has to deal with a circuit whose complete description can-
not easily be deduced. Nevertheless it may be possible to make certain
restricted statements, based on very general considerations, about the
behavior of the circuit. Such observations prove very useful, not only
in reducing the number of parameters that have to be determined experi-
mentally to complete the description of the circuit, but in disclosing ~asic
similarities between circuits superficially different and in avoiding vain
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efforts to contrive circuits having properties prohibited by one of these
general principles. For these reasons much attention will be devotedin
this book to those general theorems which can be shown to apply to
certain classes of circuits. One topic, for example, will be the properties
of a lossless three-terminal-pair junction, by which is meant an enclosure
of arbitrary shape, with perfectly conducting walls, provided with three
outlets.

1.5. Linearity.—It is probably_obvious that the program outlined
does not include nonlinear circuit elements in its scope. The situation in
this respect is similar to that which prevails at lower frequencies, except
that, at least until now, the need for general techniques of nonlinear
circuit analysis has been less acute in the microwave region. The micro-
wave oscillator, the gas switch, and the crystal detector are the only
nonlinear microwave devices of present importance, and each of these
must be treated in a special way and is so treated elsewhere in this series.
It is, of course, just this restriction to linear circuit elements which makes
possible the sort of analysis with which we shall be concerned.

1.6. Dissipation.—The reader will find that much more attention is
devoted to dissipationless networks than would be justified in a study of
low-frequency circuits. It is one of the attractive features of the micro-
wave region that most microwave circuit elements show such a small loss
that the error made in assuming that all conductors are perfect condue-
tors is usually negligible—except, of course, in the case of highly resonant
circuits. The reason for this, broadly speaking, is that low-frequency
circuit elements and microwave circuit elements do not differ much in
physical size, and the Q of elements of the same size varies directly as the
square root of the frequency, if skin resistance only is concerned. Ferro-
magnetic materials are not employed as a rule, and the dielectric materials
are used sparingly.

1.7. Symmetry.—One other conspicuous feature of microwave cir-
cuits is the symmetry properties possessed by many widely used circuit
elements. By simply joining a number of similar waveguides together
in a geometrically symmetrical way, it is relatively easy to construct a
circuit whose low-frequency equivalent would consist of a complicated
network of accurately matched elements. In other words, geometrical
and electrical symmetry are here naturally and closely allied. The
result is to stimulate the investigation of symmetrical networks of
many types, including those with as many as four or even six terminal
pairs, and to simplify the analysis of many useful devices.



CHAPTER 2
ELECTROMAGNETIC WAVES

By C. G. MONTGOMERY

THE FIELD RELATIONS
2-1. Maxwell’s Equations.—In electromagnetic theory, the inter-
action between charges and their mutual energy is expressed in terms of
four field vectors E and B, D and H. - The first pair define the force on a
charge density p moving with a velocity v by the equation

F = p[E + (v X B)l.
The vectors E and B satisfy the field equations

curl E = — %, divB = 0. (1)

The second pair of field vectors are determined by the charges and
currents present and satisfy the equations

curl H = J + %]tz’ divD = p, ®)]

where J is the current density and p the charge density. The set of
Egs. (1) and (2) is known as Maxwell’s equations of the electromagnetic
field. Sometimes the force equation is included as a member of the set.

The connection between D and E, and B and H, depends upon the
properties of the medium in which the fields exist. For free space, the
connection is given by the simple relations

D = EoE, = p.oH.

For material mediums of the simplest type the relations are of the same
form but with other characteristic parameters

D = ¢E, B = uH.

The symbol € denotes the permittivity of the medium, and u the perme-

ability. For crystalline mediums which are anisotropic, the scalars e and

g must be generalized to dyadic quantities. Then D and E no longer have

the same direction in space. This more complex relationship will not

be dealt with here. If the medium is a conductor, then Ohm’s law is
10
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generally valid and
J = JE,

where ¢ is the conductivity. The properties of the medium are thus
expressed in terms of the three parameters o, ¢, and p. Each of these
parameters may be a function of frequency, but the variation is usually
small and will nearly always be neglected. These parameters are, more-
over, not functions of the fields. The conductivity varies from 10-14
mho per meter in the best insulators to 5.8 X 107 mhos per meter for pure
copper. The quantity ¢/e, is called the specific inductive capacity. Itis
denoted by k. and usually lies between 1 and 10. For most substances,
u/uo is very close to unity, but may be as great as 1000 for soft iron.
In this case, u/uo is also a function of H. For a medium in which e and
pare constant and Ohm’s law applies, the field equations become

dH dE
Tt’ curl H = O'E + € W’ (3)

div (uH) = 0, div (E) = p.

curl E = —p

The units in which these equations are expressed are rationalized
units; that is, the unit electric field has been so chosen as to eliminate the
factors of 47 that occur when Maxwell’s equations are written in electro-
static units, for example. The practical rationalized system, the mks
system of units, will be used here. Thus E and B are measured in volts
per meter and webers per square meter respectively, H in amperes per
meter, D in coulombs per square meter, p in coulombs per cubic meter,
and J in amperes per square meter. In the mks system x and e have
dimensions, and have numerical values that are not unity. For free
space p and e will be written as o and ¢, and these quantities have the
values

po = 1.257 X 10—¢ henry per meter,
e = 8.854 X 10712 farad per meter.

The velocity of light in free space is 1/4/ueeo and is equal to 2.998 X 108
meters per second. A quantity that frequently appears in the theory is
v/u/e. For free space, this is equal to 376.7 ohms. The mks system of
units is particularly suitable for radiation problems. As will be shown
later in this section, a plane wave in free space whose electric field ampli-
tude is 1 volt per meter has a magnetic field amplitude of 1 amp per
meter, and the power flow is § watt per square meter. Of more impor-
tance, perhaps, is the fact that in practical units, the values of impedance
encountered in radiation theory are neither very large nor very small
numbers but have the same range of values as the impedances encoun-
tered in the study of low-frequency circuits. The dimensions of quanti-
ties in the mks system may be chosen in a convenient manner. To the
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basic dimensions of mass, length, and time is added the electric charge
as the basic electrical dimension. Table 2:1 shows the dimensions and
practical units for the quantities that are of most importance. It is of
interest to note that no fractional exponents occur in this table. It is
this circumstance, in fact, which urges the adoption of the charge Q
as the fourth basic dimension for physical quantities.

TABLE 2:1.—DiMENsIONS AND UNITs OF ELECTRICAL QUANTITIES

Quantity Dimensions Practical unit

Length...................... L Meter
Mass.........ovvviiennio. .. M Kilogram

Time, t...................... T Second
Power...................... ML2T-3 Watt
Charge...................... Q Coulomb

Current; I...................|QT? Ampere

Registance, R................| ML*T-1Q~2 | Ohm

Electric potential, V.. ... . .. .| ML2T2Q~1 | Volt

Electric field, E.............. MLT—2Q~! | Volt/meter
Displacement, D............. L—2Q Coulomb /square meter
Conductivity,e.............. M-L73TQ* | Mho/meter
Dielectric constant, e......... M—L3T7%Q? | Farad /meter
Capacitance, C........... ... M—L—2T2Q? | Farad

Magnetic intensity, H...... .. L17-1Q Ampere/meter
Magnetic induction, B....... .| MT-1Q™! Weber /square meter
Permeability, g............ .. MLQ™ Henry/meter
Inductance, L.......... . ... ..| MLQ™? Henry

Maxwell’s equations are to be applied with the following boundary
conditions at the junction of two mediums, provided that J and p show no

discontinuities at the boundary
E¢=E2 H¢=H:, (4)
B, = GIE,t,” wH, = F-/Hlm

where the primed symbols refer to one medium and the unprimed ones
refer to the other. The subscripts ¢ and n refer to the tangential and
normal components of the fields at the surface of discontinuity. When
a current sheet is present, the boundary condition must be modified to be

for the discontinuity in H across the boundary, where K is the surface
current density. If a surface charge of density £ is present, then

¢E, — {E, = ¢

For perfect conductors, ¢ becomes infinite, and a finite current can
be supported with a zero electric field. The magnetic field also vanishes
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within the conductor, and the boundary conditions are
E, =0, H, =0, H, =K. (6)

Such a surface may be called a sheet of zero impedance or an electric wall.
For certain calculations it is convenient to emaploy the complementary set
of boundary conditions

E,=0, H,=0. (7)

A surface that imposes these boundary conditions is called a sheet of
infinite impedance or a ‘“magnetic wall.” In practice, a good conductor
is a close approximation to an electric wall which imposes Conditions (6).
No materials exist for which Conditions (7) are satisfied, and those condi-
tions are employed as a means of expressing certain symmetry conditions
on the field.

There remains one additional fundamental equation which expresses
the conservation of charge

. dp _
d1v]+5 = 0. (8)

In fact, it is logical to consider that the fundamental equations consist
of the curl equations of Egs. (3) together with Eq. (8). From these three
equations, the two divergence equations can be easily derived.

The set of field relations is now complete and self-consistent. If the
charge density p and the current density J are given, the equations can
be solved and the field vectors obtained at all points. Conversely, for a
given configuration of conductors and dielectrics, a possible field and the
currents and charges necessary to maintain that field can be found. This
latter procedure is the one which will be more often adopted, principally
because it is by far the simpler. By a combination of such elementary
solutions, a situation of any degree of complexity can be represented.

For fields that vary harmonically with time, Maxwell’s equations take
a simpler form,

E = Eeiv, H = Hevt,

where the amplitudes of E and H are to be regarded as complex numbers
and thus include the phases of the field quantities. Equations (3)
become

curl E = —juwH, curl H = J 4+ jweE = (¢ + jwe)E, (9)

the other pair of equations being unchanged. If such simple harmonic
solutions are obtained, solutions with an arbitrary time dependence can
be constructed by means of the usual Fourier transformation theory.
The monochromatic solutions, however, are the solutions of greatest
interest.

In many cases, it is convenient to modify this notation and obtain a
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form of Eqgs. (9) that is apparently even simpler. If ¢, = ¢ — jo/w, the
second of Eqs. (9) becomes simply

curl H = joe,E. (10)

In fact, Eq. (10) may be regarded as more general than Eqs. (9), since
the form of Eq. (10) is a suitable representation of any loss of energy that
is proportional to the square of the electric field, such as, for example,
that part of the dielectric loss which is to be explained by permanent
dipoles whose motion is restricted by the viscous nature of the dielectriec.

2-2. Poynting’s Vector and Energy Theorems.—In the study of very-
high-frequency phenomena, it is convenient to think in terms of the elec-
tromagnetic fields rather than in terms of the flow of currents and charges.
The field should be regarded as containing energy which flows along a
transmission line in the field rather than in the currents. This concept
is helpful in two ways. TFirst, at very high frequencies the flow of current
on a surface is not divergenceless. The displacement currents are large
in magnitude and difficult to visualize effectively. Second, a close rela-
tionship exists between a waveguide transmission line and a radiating
antenna. In order to obtain a good physical picture of energy transfer, it
is necessary to invoke the intermediate action of the electromagnetic fields
rather than to try to conceive of interaction at a distance between currents
on the surfaces of conductors. Philosophical difficulties may be created
in the minds of some people by this emphasis on the picture of a physical
quantity, such as energy, existing in empty space. It is better to dis-
regard these difficulties, at least for the moment, in order to gain, from
the field picture, greater insight into the problems at hand.

The amount of energy that exists in an electromagnetic field may be
found by considering the manner by which energy can be transferred
from the field into mechanical work, by means of the forces and motions
of charges and charged bodies. Thus from the force equation given in
Sec. 2-1, expressions for stored electric and magnetic energy can be
deduced. This will not be done here; rather, the discussion will be
confined to the concept of the flow of electromagnetic energy through a
closed surface.

If from Eqgs. (3) the following expression is formed,

H-curlE — E:curl H = div (E X H),
then
H oE

div(EXH)=—E.J —uH- 3 —eE-E-

The integral of this expression over a volume V, bounded by the surface S,
gives

‘ Co 29 Y Y oYy
/smxm“da- /"E-JdV atﬁ’(zwﬁ—zﬂu)w. (11)
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This equation is taken to represent the conservation of electromagnetic
cnergy in the volume V. The first term on the right is the work done per
second by the impressed forces (currents); $eE? is the electric energy per
unit volume; and 3uH? is the magnetic energy. The left-hand term is
then the flow of energy through the surface S enclosing the volume V.
It is in the form of the flux of a vector

S=EXxH, (12)

which is taken to be the density of energy flow and is called Poynting’s
vector. It is recognized that this identification is not unique, since, for
example, the curl of any field vector may be added to S without affecting

Fi1g. 2-1.—Energy dissipation in a wire.

the validity of Eq. (11). The arbitrariness in the interpretation of S
will, however, not lead to difficulty, since only the surface integral of S
will be used.

As an example of the use of Poynting’s vector, let us consider a cur-
rent flowing through a long wire that has a finite conductivity. For the
closed surface, let us choose a small cylinder enclosing the wire as shown
in Fig. 2:1. The electric field on this surface will be constant and parallel
to the wire. The magnetic field lines will be circles about the wire, and
the field strength will be H = I/2rr, where 7 is the radius of the cylin-
der. Poynting’s vector will be perpendicular to the cylindrical surface
and directed toward the wire. Its value will be

. _EI

S ==
2mr

If I is the length of the surface, then the normal flux of S will be simply
EIl. This represents, then, the rate of energy flow into the wire, and it is
just what would be calculated from more elementary considerations of
the Joule heating produced by the electric current.

It is known that this energy is transferred to the wire by collisions of
the electrons with the atoms of the wire. It is useful, however, to dis-
regard considerations of this mechanism and to think of the energy as
being stored in the electromagnetic fleld and flowing into the wire at the
definite rate given by Eq. (11).

In a similar manner, for periodic fields represented by complex quan-
tities, the following expression can be formed

H* curl E — E - curl H* = div (E X H*).
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From Eqgs. (9), after transformation to the integral form and division by
2, there results

,}/S(E X H*), dS = ~é/VE.J*dV
+ 3jw /V (lE|2 — ulH|®) dV. (13)

The real part of the first term on the right is the average work done per
second by the impressed currents, and this must be equal to the power
flowing across 8. The average electric and magnetic energies stored per
unit volume are respectively 3¢|E|2and $u|H|2. 'Thusa complex Poynting
vector may be defined as

S =3E X H* (14)
The real part of the normal flux of the vector S through a surface is the
average power flow through the surface. It is to be noted that Eq. (13)
is not derivable from Eq. (11) but represents an entirely distinct energy
theorem.

2-3. Solutions of Maxwell’s Equations.—General solutions of Max-
well’s equations can be expressed in several forms. Perhaps the one that
gives the simplest physical picture is the solution in which E and H are
expressed in terms of the retarded potentials which, in turn, are related to
the magnitudes of the currents and charges present. Much more
information may be obtained by considering particular solutions and
deducing the properties of more complex situations from the behavior of
the simpler ones. Since the equations are linear, a linear combination of
particular solutions is also a solution. A series of cases of increasing
complexity, leading up to the case of the propagation of energy through
metal pipes, will now be considered.

Electromagnetic fields and energy propagation will be spoken of in
terms of waves. This means simply that E or H will be expressed in
terms of the coordinates and will have a time dependence of &*'. Since
E and H are complex numbers, their absolute values or moduli are called
the ‘‘amplitudes’ of the waves, and their arguments the “phases” of
the waves.

If a metal surface is present in a field, E, is zero or very small over the
surface of the metal. The Poynting vector S can have only a very small
component into the metal, and only a small amount of energy flows
through the surface: Thus it is possible to enclose an electromagnetic
field within a metal tube and transmit power from place to place without
too much loss. Some loss will be present, to be sure, since currents must
flow in the tube walls to maintain the fields, and some power will there-
fore be converted into heat. Let us investigate, then, the conditions
necessary for propagation of this type to take place.
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Either E or H can be eliminated from Egs. (9) by taking the curl of
the equations and employing the vector identity

curl curl E = grad div E — VZE,
Since the divergences of the field quantities are zero,
VE + w?ueE = 0,

and an identical equation for H is obtained. These equations are known
a8 the wave equations and must always be satisfied, whatever boundary
conditions are imposed. The wave equations are then necessary condi-
tions on E and H. They are not, however, sufficient; the fundamental
Maxwell’s equations must be satisfied, and they are not derivable from
the wave equations. Maxwell’s equations give the necessary connection
between E and H.

It is helpful to classify the particular solutions of Maxwell’s equations
according to whether or not components of E or H exist in the direction of
propagation. Let us take the z-axis in the direction of propagation.
First, it can be shown that no purely longitudinal waves may exist. Let
ustake E, = E, = H, = H, = 0. Then

. 0E, 9E. _
curl, E= ]wuH, = E - '—ag = 0,
and
y _0H, oH, _
curl H = jweE, = or oy 0,

and all components vanish. Second, purely transverse waves exist in
which neither E nor H has longitudinal components. Such waves are
called transverse-electromagnetic (T7EM) waves or principal waves.
Third, transverse waves may exist in which only E has longitudinal
components. Such waves are called transverse-magnetic (T'M) waves or
E-waves. In a fourth class are waves in which only H has longitudinal
components. These are called transverse-electric (TE) waves or H-waves.
This classification is inclusive, since all possible solutions of Maxwell’s
equations may be built up of linear combinations of elementary solutions
of the latter three types. The TEM-waves will first be discussed; then
the TE- and T M-cases will be considered.

PURELY TRANSVERSE ELECTROMAGNETIC WAVES

2-4. Uniform Plane Waves.—A wave is said to be plane if the equi-
phase surfaces, at a given instant of time, are planes. A wave is uniform
if there is no change in amplitude along the equiphase surface. Let the
zy-plane be taken as the equiphase surface. Then 8/dz = 4/3y = 0,
and E,; and H, must be zero. A uniform plane wave is therefore said to
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be a transverse-electromagnetic (TEM) wave. Equations (9) reduce to

oE, . oH .
F = —joul,, St = —( + jeoE..
If H, is eliminated,
NE, . .
'(—9?’ - wu(d + ]wE)Ez = 0. (15)

An identical equation exists for H,. These equations are known as the
“telegrapher’s” equations.
The solution of Eq. (15) is E, = Ee~*, where E may be taken as

real, and
¥ = Vjwur — wlu = a + j8. (16)

The quantity v is called the “‘propagation constant” of the wave; its
real part « is called the ‘““attenuation constant’; and the imaginary part
-8 is called the ‘‘phase constant.” The sign of the square root in the
expression for v is to be taken so that « is positive for a wave traveling
in the positive z-direction and negative for a wave in the negative z-direc-
tion. The phase velocity v of the wave is then w/g, and the wavelength
A = 2r/8. The quantity § is called the “wave number’’ although,
strictly speaking, it is the number of radians per unit length and not the
number of wavelengths. If the conductivity of the medium, ¢, is small,
B = wVepand v =~ 1/+/eu. If ¢ is not negligible, the exact expressions
are
a = [fop(Vo? + vl — we)l¥,
= eu(VFF G+ wol

The solution of the second telegrapher’s equation is

H, = - 1 E,.
Jou
The ratio E,/H, is called the “wave impedance’ and may be denoted

by Z..

_ | dew
2 o + Jwe an)
When ¢ = 0, Z, = v/p/¢; and for free space, Z, = 377 ohms. For o
not equal to zero, .
Zw e T—————————1 + j .
/s (B + jo)
It is to be noted that, for TEM-waves, Z,, depends only on the properties
of the medium. The expression for Z,, given by Eq. (17) is a combination
of the constants of the medium which often occurs. It is called the
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“intrinsic impedance” and is denoted by ¢. Thus

- /J'wu .
£ = o + jwe

For the special case of TEM-waves,

Z,=¢.

The inverse of { is the intrinsic admittance and is d(_enoted by 1.
Since ¥ may be positive or negative, depending on the sign of the
square root in Eq. (16), E, can be written in the general form

E. = Eie v + Eqem,

and a similar equation can be written for H,. These equations represent
two waves traveling in opposite directions.

A general solution of Maxwell s equations may be built up out of a
set of elementary uniform plane waves, the directions and amplitudes
being chosen in such a way as to satisfy the boundary conditions. Thisis
an excellent artifice for some purposes, but because the description of the
field in these terms becomes quite complicated except in the simplest
cases, this method will not be discussed further here. In a similar
manner, the six components of E and H might be replaced by wave
impedances Z;; = E;/H;, i, j referring to some coordinate of the space
that is being considered.

In general, the problem is not simplified in this way. However, in
certain cases the wave mpedance is a useful concept, and a complete
description of a situation may often be obtained in terms of wave imped-
ances and propagation constants. A very important example is the
treatment of the problem of reflection and refraction of plane waves at
the boundary between two mediums. For a complete discussion of this
problem the reader is referred to other texts.!

2.6. Nonuniform Transverse-electromagnetic Plane Waves.—Let us
remove the restriction that the fields be uniform in a transverse plane,
but let H, = E, = 0. The electromagnetic equations may be broken
up into two sets, the first of which governs the propagation in the
z-direction

JE, . dE .

oz = Jorty oz~ Jendls

0H, . dH, . (18)
9z = (0 + jwe)E,, 3z = — (0 + jwe)E..

The second set governs the distribution of E and H in a transverse plane

1 See, for example, 8. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New
York, 1943 Chap. 8, p. 251.
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oE, + 3k, ~0, 3H, QI_! =0,

dx oy ox ay (19)
OB, _ 3F, oH, _ oH,
oy oz dy az

From the first of these sets, identical equations in any of the four
variables E., E,, H., or H, can be obtained by elimination. For example

’E,

az?

= jwl-"(a' + wa)E,.

The solution may be E. = E(z,y)e—>* where v has the same value as
before. It has been shown, therefore, that all plane TEM-waves have
the same propagation constant and hence the same velocity and attenua-
tion as uniform plane waves. Moreover, H, = (Jou/v)E., and

_E. _ fjam _
ZW_H_,,_ a+jwe_g‘

Hence the wave impedances of all plane TEM-waves are identical, and
equal to the intrinsic impedance of the medium.

If E, had been found from Maxwell’s equations, and if it had been
assumed that E, = E(zr,y)e~7, then the wave impedance would have
been found to be

This may appear to be a contradiction, but the situation is readily under-
stood if the z-component of the Poynting vector is formed
8, = $(E X H*), = §(E.H} — E,H})
#(Z,H,Hy — Z,,H.HY),
8. = $Z,(|HJ|* + |H,|") = $Z,/H|%

The negative sign for the wave impedance is thus merely the result of
the choice of the positive directions of the coordinate axes and represents
no significant new fact.

The field distribution in the transverse plane is governed by Egs.
(19). They show that either E or H or both can be derived from a scalar
potential or from a stream function. Let, for example,

i

I

E = — grad ¢
so that
_ 9 _ __9¢
E, = t%ﬂ v = @7
where ¢ is a scalar potential. The curl equation is therefore satisfied,
E. _9E, _ 3¢

dy ax  dxdy
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The other equation for E gives

Thus E is determined as though the field were a static one, and all of
the techniques for solving static problems become available. Since
Zoy = —Zys

E. _ _H

E,”  H.
or the electric lines of force must be perpendicular to the magnetic lines
of force. However, the electric lines are perpendicular to the lines
¢ = constant; hence the equipotential lines must represent magnetic
lines.

One very important consequence of these conditions may be shown
easily. Suppose that there is a cylindrical metal tube whose wall is
represented by the curve ¢ = a. Now if ¢ has no singularities within
the region bounded by ¢ = a, then ¢ must be a constant throughout the
region and E must be zero. Therefore no purely transverse electromag-
netic wave can propagate down a hollow pipe. If there is another con-
ductor, however, within the region ¢ = a, then a finite value of E is
possible, since ¢ may have singularities within the inner conductor which
allow the boundary conditions to be satisfied. This mode of propagation
will be studied in more detail in Sec. 2-7.

Suppose that there is a field distribution representing a TEM-wave.
Then without disturbing the field, a conductor can be inserted along any
curve ¢ = constant so that it is everywhere perpendicular to the electric
lines. This is a useful device and will often be employed.

A stream function may also be employed to specify the fields. If

H z = %’ H y — — 6—141

y ax
then the equation

OH. | oH, oA &4 _
ax dy  dxdy odxdy
is satisfied. Hence 4 must be determined by the equation
%A %A
ot Ty T
The scalar A may be regarded as the z-component of a vector A whose
other components are zero. Then
H = curl A.

For this special case A might be considered as the vector potential or the
Hertz vector.

0.
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2-6. TEM-waves between Parallel Plates.—If there are two infinite
conducting planes at ¥y = 0 and y = b (Fig. 2-2), the electric field must
be normal to these planes and the magnetic field must be entirely tan-
gential. The solution of Maxwell’s equations given previously for
uniform plane waves is the solution in the region between the planes. It
was found that

E, = Eereiv, H.= — B, _ ?e““f‘e""",

§
which hold for 0 < y < b; for y outside this region, E, = H, = O.

z

/

Fia. 2-2.—Infinite conducting planes.

Conductors perpendicular to E have been inserted along lines ¢ = con-
stant, and this has not altered the values of the fields. As before

v =jVoleu — jupo.
Currents must flow in the plates to maintain the fields. They are

determined by the boundary condition expressed in Eq. (5). The linear
current density that flows in the direction of propagation is therefore

K= -H, = ?e‘*f‘e””‘.

The power flow between the plates in the z-direction is found by calcula-
tion of the Poynting vector

1 E? 1
8, = 3 (E X H*)z = —2~§j; e~ (rty ¥z
If v = « + j8,
E? 1
S: = -—2—'5;;6'-2‘".

If 8. is integrated from y = 0 to y = b, then the power flow across a unit
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length in the z-direction is
_ _ E b s
P—bRe(S;)—Q—R}-(—ﬁe ,
where Re ({*) represents the real part of the intrinsic impedance. If the
medium is lossless,

{=Re() = \/Q—‘

The power is thus attenuated at the rate of 2a per unit length.
This power flow may be expressed in terms of the currents in the con-
ducting plates and quantities that may be called impedances. Thus

P = 3KK*b Re (¢).

To make this analogous to the power flow in a low-frequency circuit, an
impedance may be defined that is different from the intrinsic impedance
¢ and might be called the ‘“current impedance” Z,,

Z; = b Re ({).

It should be noted that the dimensions of this quantity are not ohms but
ohm-meters. In a similar and wholly arbitrary fashion an impedance
may be defined in terms of voltage. Let us take V for the voltage accord-
ing to

b
V= / E,dy = bE,.
[1]

Since there are no longitudinal components of the fields, this integral is
independent of the choice of path of integration between the plates.
Thus V is uniquely defined. The “voltage impedance” may now be
defined as

V*
Zv = Re (%13—> = b Re ({*)y

and is thus equal to Z;. It should also be noticed that a third kind of
impedance may be defined by

V _bEy
E-m %

Thus, for this simple case of a parallel-plate transmission line, there are
several definitions of impedance that lead to the same result, in a fashion
identical with that which prevails for low-frequency transmission along
a wire. For the more complicated modes of propagation it will be found
that these simple relations are no longer true.

2:7. TEM-waves between Coaxial Cylinders.—Another simple case
of considerable interest is the propagation of waves between conducting
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coaxial cylinders. The fields are no longer uniform, but a TEM-wave is
permitted because the electrostatic potential may have a singularity
within the inner conductor. Let the inner and outer radii be a and b
respectively (Fig. 2-3). Then

E.=H,=H,=E4 =
and the equatlons

3H, _

= —jwpH,, e

- (0' + ]M)Er

determine the propagation in the z-direction with

Fre. 23—TEM-
waves between coaxial the same propagation constant y and wave imped-

cylinders. ance as those obtained in general for TEM-waves.

The transverse variation of the fields is determined from

1 8H,

ar r 3¢

=@+ jwe)Etr

or

d
ar (rHy) = 0,

and rH, is therefore a constant. It is convenient to express this constant
in terms of the total current I flowing on the conductors. There is
flowing on the outer conductor a current density K,

K = H(®).
The current I is then

2x
/ Kbde = 2nbH,(b),
0

and hence
I

Hs = o

The total current on the inner conductor is also I. The radial electric
field is

_ I, _ 1 [T
Er_21r7'§'_27rr a + jwe

The directions of E,, H,, and I for a wave traveling in the z-direction are

shown in Fig. 2-3.
The Poynting vector is
S, — 1

2

I7*

EHY = —E

Do —

and the total power is

. \
P = / Re |S.|2xr dr = _Re_f,'r)!_li lné



8ec. 2-8] SPHERICAL TEM-WAVES 25

As in the preceding section, several impedances can be defined

Re (), b *E.dr _V

Z'=m—‘“a=[, T ~T1~ %
which are again equal only because of the simplicity of the field con-
figuration. The impedances defined here are all measured in ohms.
Here also the integral in the definition of V is unique, since the fields are
entirely in the transverse plane.

The fields can also be expressed in terms of the fields at the surface of
the center conductor. Let these fields be E, and H,. Then

Er - Ea,
r

H' = 4 Ha.
r

The total power flow is then
b

ma’E? In P
—_ I In 2 — .
P = Re ({)ma*H? In P Re O

In terms of the coaxial impedance Z, = Z, = Z,,

o

= 2,2 2 — 242 Zy 2
P = 2r%?Z,H? = 2n% GE E2
A coaxial line, operated in this mode of transmission, is thus very similar
to a low-frequency circuit. The voltage V, the current I, and a unique
characteristic impedance Z, can z
be defined.

It should be pointed out that
this is not the mode of transmis- ®
sion for a single wire with a finite
conductivtiy in free space, in the
ordinary low-frequency approxi- 8
mation. In the case of a single
wire, the electric field is in the di-
rection of the wire and the mode of
propagation is a transverse-mag- Y
netic mode with respect to the di-
rection of the wire.

2-8. Spherical TE M-waves.—
Transverse-electromagnetic
spherical waves are analogous to X
plane waves. In the spherical co-
ordinates r, 6, ¢, shown in Fig. 2-4, the vector operations are defined by

F16. 2-4,—Spherical co-ordinates.
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1 A,
(CUI'I A)f = r—sm—é[ ( 11 0A¢) a¢ ]
1 94,
(curl A)y = e [W — sin 8 — (rA¢):l
119 A,
(curl A)¢ = ; I:E ( [ EY) }

, _ 1 . 94,
leA_m[SIHG—(TA)+T (s1n0Ao)+r—¢]
If H, = E, = 0, the curl equations of the electromagnetic field reduce to
wurHy = o (rB,),  jowrHy = — 5 (1B
Jwurile = ar Thy), SJwuridy = F rEs),
. a3 . a
(o + jwe)rEs = — 3r (rH,), (6 + jwe)rEy = a (rHs).

If these are compared with the set of Eqs. (18), it is seen that they are
identical provided that

rE4 and rHy are replaced by E, and H.,,
rEq and rH, are replaced by E, and H,.

The divergence equations are

5'30 (sin 0E,) + -"— LB, -0, o (sm oH) + o H., = 0.
3 OE, aH
36 (sin 0E,) = %’ (sm 0H,) = —¢—)9

These are again exactly analogous to Egs. (19) and show that either E
or H or both are derivable from either a potential function or a stream
function. It can therefore be concluded that spherical TEM-waves have
the same wave impedance and propagation constant as plane TEM-waves.

2:9. Uniform Cylindrical Waves.—The solutions of the electromag-
netic equations for the special cases of purely transverse waves will be
completed by considering uniform cylindrical waves. Thus

a a
a6~z
E.=H,=0.

The electromagnetic equations break up into two independent sets, as

before,
dE

: _ 9 .
E = ]wy.H¢, & (TH¢) = (O’ +]we)rE',, (20)
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and
oH,
ar

d . .
3y 7Bs) = —jewrH,, = —(0 + jwo)E,. (21)

Only the first set, Egs. (20), will be considered. Elimination of H,
results in

d*E, | dE, . .
T + a wu(o + jwe)rE, = 0.
If this equation is divided through by a new variable x = ~r, it becomes
dE, | 1dE, ~
@ Tzar B0

The solution of this equation is a Bessel function of order zero with the
argument jz.! Any pair of independent solutions may be chosen, in
terms of which the fields may be expressed. Let us take

E. = AH{(jz) + BJo(jz),

where A and B are arbitrary constants and H{" is a Hankel function of the
first kind
HP(x) = Jo(z) + jNo(2).

To find the physical meaning of these solutions, let us consider them
separately. If

E. = AHQ(jx) = AHP (jr),
then

_yAdHPGy) _ A

Jou  d(Gyr) [ (),

from Eqgs. (20), and the wave impedance Z,, is

E. _ , _ HPG)
A G

For large values of r, the asymptotic forms may be inserted. Then

E.= A \/5.24 ej(”"g),
m}Yr
A 2 (-
He ==~ #Tvre( 4)’

and
Zw = jg—ei(rﬂ) = —¢.

If v is separated into its real and imaginary parts,

vy = a+ jB,

I 8ee, for example, Fugene Jahnke and Fritz Emde, Tables of Functions with
Formulas and Curves, Daover Publications, New York, 1943, p. 146,
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E.=C \/I e—erg=ifr,
r
—— C 1

Hy, = — 3 1—1_-6—“’6"'”,
where C is a new real constant. These are the equations of a cylindrical
wave traveling outward and attenuated at the rate of « per unit length.
The wave impedance is the same as for a plane wave, the negative sign
being necessary because of the choice of the positive direction of the
coordinates. For small r, both E and H become infinite and must be
produced by an energy source at a finite radius.
The second solution is

E. = BJo(jz) = BJo(jvr),

then

_Bd . _ =g,
H, —J-j#d—TJO(J'YT) =~ J1(gyr),
and the wave impedance is
. Jo(Fyr)
Z, = .
9 7.6

Again, for large values of r,
2 . T

E.=B o cos (J'yr - Z)’

. —jB [2 . 3

H, N cos (J‘yr T)

Z, = j¢ cot (j-yr - ’—')-

4

Thus this solution does not represent a propagating wave unless some loss
is present. If 4 is purely imaginary, Z, is likewise purely imaginary and
no propagation of energy takes place. It should be emphasized that for
neither solution is Z, independent of r, although for the outward-travel-
ing wave it approaches a constant value. All the cases in which the
electromagnetic vectors are purely transverse to the direction of propaga-
tion have now been described briefly. The longitudinal modes will be
described in the portion of this chapter following Sec. 2-10.

2:10. Babinet’s Principle.—Maxwell’s equations have a symmetry in
the electric and magnetic fields that is extremely useful in the discussion
of electromagnetic problems. One aspect of this symmetry can be
expressed as a generalization of Babinet’s principle in optics. If E and

H in Maxwell’s equations are replaced by new fields E’ and H', according
to the relations
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+ \/gH’,
R

it is found that E’ and H’ also satisfy Maxwell’s equations. The bound-
ary conditions must be altered accordingly. On a metal wall, the
tangential component of E vanishes; therefore the new boundary condi-
tion should be that the tangential component of H’ vanish over this same
surface. The electric wall in the unprimed system must be replaced
by a magnetic wall in the primed system. Likewise magnetic walls in
the unprimed case are to be replaced by electric walls. When the
boundary conditions consist of the specification of a radiation condition,
no change is required for the transformation. Poynting’s vector is

E

(22)
H

i

S=EXH=-H XE =E XH =§

and is therefore invariant.

A simple example of the application of Babinet’s principle is afforded
by the reflection of a wave from a metal plate. At normal incidence, if
the plate is perfectly conducting, a pure standing wave is set up, with
planes of zero electric field parallel to the plate and spaced one-half
wavelength apart. The magnetic field is a maximum at the metal plate
and has planes of zero intensity wherever the electric field is a maximum.
If E is replaced by H', H by —E’, and the metal plate by a magnetic
wall, another possible field configuration is obtained. The new solution
is obvicusly identical with the old ! '
one if one imagines a magnetic _{—‘!_ ““““““““

E ! H
wall placed one-quarter wave ! - g
length in fronf of the electric wall. !

A second example canbefound _; 1
in the propagation of the TEM- :
mode between parallel plates. (@ )

Si i diree- Fia. 2-5.—Babinet’s principle applied to
i nce H is transver.se to the . the TEM-mode between parallel plates.
tion of propagation, magnetic The electric walls are indicated by solid lines;

walls perpendicular to H can be the magnetic walls by dotted lines.
inserted as indicated schematically in Fig. 2-5a. Application of Babinet’s
principle leads to the situation shown in Fig. 2-5b. This is obviously the
same mode of propagation as the original one, but rotated 90° about the
direction of propagation.

Although these two examples of the application of Babinet’s principle
are rather trivial, they serve to show that in order to apply the principle
it is necessary to have a system with a high degree of symmetry. All
the magnetic walls must exist by virtue of the symmetry. Many more




30 ELECTROMAGNETIC WAVES [SEc. 2-11

fruitful examples of the application of this principle can be given for waves
propagating in pipes.

ELECTROMAGNETIC WAVES WITH LONGITUDINAL COMPONENTS

2-11. General Procedure.—In the preceding sections it has been
gshown how the wave solutions of Maxwell’s equations may be divided
into three classes: solutions where both E and H are transverse to the
direction of propagation, solutions where only E is longitudinal, and
solutions where only H is longitudinal. Several cases of purely transverse
propagation were also discussed. The longitudinal modes may now be
considered. The general procedure will first be outlined and then
will be applied to the specific cases that are most commonly met in
practice.

Let us first investigate the solutions in which E is entirely transverse.
These solutions represent transverse-electric waves (TE-waves), or
H-waves. The conductivity of the medium will be omitted explicitly
from the equations and will be assumed to be contained in the imaginary
part of the dielectric constant e. If E, is taken equal to zero, Maxwell’s
equations, written in cartesian form, are

oE, oE,

By joutl, = o, (23)
aég, B 66_15;,, — jweE, agz _ @gf = jweEy, (24)
% - aa’f; = —jeull,, (25)
aa_l-i,, B 6;; 'y (26)

for the curl equations, and
2 4 % =0, (27)
o 65 + 2, (28)

for the divergence equations.

If plane waves are specified, and if it is assumed that the variation
with z of the five components of E and H are given by e¢~7, then the field
components take the form E.(z) = e~7E,, and similar expressions are
written for the other components. This ambiguous notation should
cause no confusion, since E. = E.(z) will be used only in Eqgs. (23)
through (28) ; elsewhere E, will be a function of  and y only. Substitut-
ing this, Egs. (23) become

VB, = auHe . = joudl, (29)

From these equations the first important result is obtained. The wave
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impedance Zy is

g _ Es_ jeu
In =g =" (30)
Also,
E,__dy
E,~ L 31

This result is significant. The set of lines in the transverse plane that
give the direction of the transverse electric field E, at any point have the
slope dy/dx = E,/E.. A similar statement is true for the magnetic
lines of force. Thus Eq. (31) is equivalent to

dzx

dy -
magnetic

and the lines of electric and magnetic force are therefore mutually per-
pendicular in the transverse plane.

If the assumed variation with z and the values of E, and E, given by
Egs. (29) are inserted in Eqs. (24), it is possible to solve for 6H,/dz and
0H./dy,

aBIsz - - +'yw26” H.,

oH, v? 4+ wrn (32)
= - ——7H,

9y Y

Equations (25) and (28) become equivalent, because of Eqs. (29), and
lead to

0H, | 0H, ., _
az’+ Ty _]Hz —0
Substituting for H, and H, from Eqgs. (32),
*?H, , 3*H,
e + 3 + (v* 4+ wlp)H, = 0. (33)

The remaining equations yield no new results. The procedure is thus
straightforward. A solution of Eq. (33) for H, is found; from Egs. (32),
H, and H, are determined; and from these values and Eqgs. (29), E, and
E, are obtained. Thus all the components of the field are determined
from a single scalar quantity H,. It should be noted that Eq. (33) 1s
just the wave equation for H, derived in Sec. 2-3.

To apply this to a waveguide of a particular shape, it is necessary to
find an H. that satisfies the proper boundary conditions at the walls of
the guide. If the walls are perfect conductors, E; must vanish over the
surface. These boundary conditions will give rise to a relation connect-
ing v and « and the dimensions of the waveguide. The form of this
relation will depend upon the shape of the cross section of the guide.
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If a quantity k. is introduced, defined by
k2 = 4% 4+ wley, (34)

then the numbers k2 are the characteristic values, or eigenvalues, of Eq.
(33). To each value of k2 there will correspond a function H,, a char-
acteristic function, from which may be derived the other components of
the fields. Some special cases will be treated in detail below.

The wave impedance Zx can be written in a more useful form when
the dielectric is not lossy. Since v = j(2r/\;),where A, is the wave-
length in the waveguide,

Zn = 3, (35)

where X\ is the wavelength in the dielectric medium for a TEM-wave.

The equations that H, must satisfy are identical in form with those
which apply to the velocity potential governing the propagation of sound
waves. Sound waves are essentially simpler in nature than electro-
magnetic waves, since they can always be derived from a scalar field.
Many electromagnetic problems require the vector representation.

Let us now consider the transverse-magnetic waves, or E-waves. The
procedure of solution is entirely analogous to that of H-waves. It is
assumed that H, = 0 and that the remaining components are proportional
to e~ A reduction of the equations results in expressions similar to
Eqs. (33), (32), and (29). The results are

'k, | 0%E,

T gt O G = 0, (36)
%% - — 7_24'7_“’25“512,
O, v? 4+ ol (37)_
- Y rewp
dy Y
_E _ v _ _ B
Zomyi == -t (38)

Thus E; is again perpendicular to H,, and four components of the fields
are determined from one, E,. The boundary conditions again determine
a set of characteristic numbers k? with the associated functions E, and
hence a relation between y and «. The wave impedance may also be
written in terms of A\, as

Zg = %, (39
when no dielectric losses are present.

It is now obvious that any field can be represented as the sum of TE-,
TM-, and TEM-modes. The TM-mode portion is given by the values of
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E. E, H, and H, determined from the value of E, by Eqgs. (37) and
(38). In a similar way, by the use of H,, the TE-mode portion can be
separated out by means of Eqs. (29) and (32). The remainder of the
field will then be purely transverse. It has already been shown that no
TEM-mode is possible in a hollow pipe with no central conductor.
Hence, any field in a hollow waveguide, however complicated, may be
represented by a combination of TE- and TM-modes.

Once an expression for the fields has been found, the energy flow down
the hollow pipe can be computed by integrating the value of Poynting’s
vector over the cross section of the waveguide. The power flow P is
found to be

1

1 2 _1 2

where Z,, has been written for the E- or H-mode wave impedance, as the
case may be. To maintain the fields in a hollow pipe, currents must flow
in the walls, and the surface current density is equal to the tangential
component of the magnetic field. For E-modes, the tangential com-
ponent of H is equal to the total magnetic field at the guide walls. Since
H is purely transverse, K is purely longitudinal. If a small slit is cutin a
waveguide such that it is parallel to K, the field in the guide is not dis-
turbed and there is no radiation from the slit.

2:12. The Normal Modes of Rectangular Pipes.—Let us consider a
waveguide of rectangular cross section, which has dimensions b in the
y-direction and @ in the z-direction, as shown in Fig. 2-6, and which has

v

F1a. 2:6.—Coordinates for a rectangular waveguide.

perfectly conducting walls. Let us first consider the TE-modes. Equa-
tion (33) for H., is obviously separable in rectangular coordinates and leads
to simple sinusoidal solutions. Let

H, = cos k.x cos kyy,
where the separation constants k, and k, are related by

k? = k4 k2= %+ wu.
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The quantities k. and k, are called the wave numbers in the z- and
y-directions, respectively. Following the standard procedure, it is found
that

H. = = _’: % sin k-2 cos kyy,
H, = 7 _I:_ 5 cos k.x sin kyy,
E. = k—éﬁ’_“rkfk—z cos k. sin kyy,
B = - Jopk,

oy sin k,x cos kyy.

The boundary conditions must now be applied.

When y =0ory = b, E, = 0 and k, = nr/b, where n is an integer.
Also E, = O whenz = O orx = q, and k, = mr/a, where m is an integer.
It is clear that n and m may take on any values, including zero, except
that both n and m equal to zero is excluded. Thus v is given by

2 2
= () (2 - o

In order to have propagation down the pipe, ¥? must be negative; hence
n0 waves are propagated below a certarn frequency. If no losses are present
in the medium, that is, if € is purely real, then there is a sharply defined
critical frequency w., which is given by

=) - ()]

The existence of this eritical frequency, or cutoff frequency, is character-
istic of all longitudinal waves in pipes, in both TE- and TM-modes. The
value of the critical frequency depends upon the mode under considera-
tion, that is, upon the values of n and m and the dimensions and shape of
the hollow pipe. It is more customary to formulate this in terms of
wavelength. If ), is the wavelength in the waveguide, then

2
Y *‘JE!
and
CRONCRO
N AN T \e/) T\ )
or
A

= ey {’41)
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1 n\ m\’
-6

and A, is called the cutoff wavelength. A little consideration will show
that Eq. (40) is universally applicable for both types of modes and all
shapes of pipe; only X\, differs in the different cases. The value of X in
Eq. (41) is the wavelength of a plane TEM-wave in the medium that fills
the hollow pipe. In terms of N\, the wavelength of a TEM-wave in
free space,

where

Mo = x\/‘“,
€ofLo

WP L S (43)

o (My
€pllo A

It will be noted that the cutoff wavelength defined in this way is inde-
pendent of the dielectric material filling the waveguide; the ecritical
frequency defined in Eq. (40) is not.

For frequencies below the critical value, v becomes real and the
waves are attenuated. For very low frequencies,

mr\’ nr\
2 = (T Y.
= () + (%)
For m = 1 and n = 0, v = 7/a, which corresponds to an attenuation of
27.3 db in a distance equal to the width of the pipe.
A pair of values of n and m suffice to designate a particular mode
that is called, according to the accepted notation, a TEn,,-mode. The

mode that has the lowest critical frequency for propagation is the
TE.-mode, if a > b. The critical frequency is

Eq. (41) becomes

™
we = e—y_a’ (4
and the cutoff wavelength is
Ao = 2a. (45)

This lowest mode is called the dominant mode. Equations for the fields
and diagrams showing the lines of electric and magnetic foree for various
modes may be found in See. 2-19.

It is of interest to examine in more detail the case of the lowest H-mode
in rectangular guide, since this is by far the most important case. The
fields in the guide have the values
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H, = E, =0,
= Yinka = j 2sin™
H, = k. sin k,x = j . sin =
__jwy. . __.E B E_:E__.gg, . AT (46)
E, = kzsmk,z— ])\\/:SIIIG— J)\JZ"Sma’

T
H, = cosk,x = cos o’

where it is assumed that there are no losses and hence v is purely imagi-
nary. The power flow is

3
P= %z,,f .| dS = "x—,bz,,, (47)

for a unit amplitude of H.. In terms of the maximum value of |E,|, this
becomes
_ab |E,)*

4 Zpg

Since H, = 0 at the side walls of the guide, the current density on the
side walls has only a y-component which is independent of y and which is
of unit amplitude if H, has unit amplitude. The current in the top and
bottom of the guide has both longitudinal and transverse components

K, = cos T,
¢ (48)
K, = j 2 sin ™.
Ao a
The transverse current K, is thus
zero at the center of the top and
bottom walls, and a longitudinal
slit can be cut here without dis-
Top  turbing the field. Figure 27
view shows the lines of current flow on
the top and side of the rectangu-
lar waveguide. It should be
noticed that the flow is not diver-

genceless; the circuft made by fol-

I et S A e S Side lowing a current line can be com-
~— l e —oml _lview pleted only by including the

0 B ——a-*——— Y e e »i--j displacement current on a portion

Fig. 27.—Lines of current flow (solid of the path. The total longitudi-
lines) for the lowest H-mode in rectangular ngl current is
waveguide. The dotted lines are the mag-

tic li e 4a?
netic lines. . = 3 .
I = j; K.dz ]T—)\g
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An impedance may be defined on the current basis,

2P «?
z,-2L -2z,
In a similar fashion, an impedance may be defined on a voltage basis.
The voltage is defined as V' = bE, and
V? b
ZV = ﬁ = 2 E, Z H.
Thus impedances Z,, Z;, and Zv are all different, and there is no unique
way to define a useful quantity in the nature of an impedance for a single
waveguide. This point will be discussed at length in later chapters.
The general solution of Maxwell’s equations in terms of plane waves
may be used with profit for the particularly simple case of the dominant
H-mode in rectangular guide. Let us consider two plane wavefronts
inclined at an angle 8 to the z-axis, with the electric field in the direction
of the y-axis, as shown in Fig. 2-8. If conducting plates are inserted at
y = 0 and y = b, they will cause X
no distortion of the fields, since 2z1 B
they are everywhere perpendicular

to the electric field. Now, if ver- A
tical metal walls are placed at
z=0and z = a, the pla,ne waves F1g. 2:8.—Propagation of the dominant

H-mode in rectangular waveguide in terms

will be successively reflected at & ¢ jlane waves.

constant angle 6 and will thus be
propagated down the guide. If the plane waves are taken to be in phase at
the point A, then the electric fields of the two waves add to produce a
maximum intensity at this point which we shall call E. The electric field,
at a point such as B, is equal to the sum of the amplitudes of the two waves
taken in the proper phase and is

E giw(AB cos )/ 4 E e—Tw(AB con 8) /¢
2 2 ’

where ¢ is the velocity of the ;_)l_z_me waves and AB is the distance between
the points 4 and B. Since 4B = (a/2) — z,

ar 2
E, = E cos (T cos § — z - cos 0).
Now by the choice of cos § = N/2a, E, reduces to

. TT
Ev = E sin —a—y

which is just the value for the H-mode field. In a similar manner the
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components of the magnetic field can be found, and they will agree with

the H-mode values. Thus the H-mode field has been decomposed into

that of two plane waves and a useful concept in describing some of the

properties of the H-mode is gained. The point 4 moves with the
velocity

c N

smg  °N

)

which is just the value of the phase velocity of the H-mode waves.

The results for the rectangular waveguide may be applied to the
higher modes between parallel plates. If the height of the guide, b, is
allowed to become very large, the solution for parallel plates, when the
electric field is parallel to the plates, is obtained. A series of modes
exists, for all integral values of n excluding » = 0, corresponding to the
TE,,-modes in the rectangular guide.

The TM-modes may be treated in a very similar manner. The
equation for E. is again separable in rectangular coordinates, and the
following values are found for the fields:

E. = sin k.x sin kyy,

E, = ~ _if i cos kzx sin kyy,
vky
E, = TETR sin k.x cos kyy, (49)
H, = k? _+]_Ck2 sin k,x cos kyy,
H,=—j 72 _*I_Ckz cos k. sin kyy,

where as before
ki =k 4+ k=7 + o,
nr mm

ky = ;} kz = —b"
The modes are designated as TM.,-modes, and it is evident that the
lowest mode is the TM-mode, since the zero values of m and n are
excluded. The cutoff frequencies are given by Eq. (40), and the cutoff
wavelength of the lowest mode is

A = _ 200
2\ [ " Vat T b
2 . .
This wavelength has the simple geometrical
Fre. 20 CT  wavelonsth interpretation shown in Fig. 2.9,
16: 20 Cutofl waveleng 2-13. The Normal Modes in Round Pipes.

To treat the case of waveguides of circular
cross section, it is convenient to employ evlindrieal coordinates r, 8, z and
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to choose the axis as the direction of propagation. For TM-modes, the
wave equation for E. is

E, | 10E. , 19°E,
tre Y

or? r ar

+ (v* + w’ew)E. = 0. (50)

If the variables are separated by taking
E. = R(1)©(0),

the equation for © is
9%0

o T X0 =0,

where x? is the separation constant. The solution is
B = ext, (51)

and hence x must be an integer or zero. The complex form of the func-
tion ® is interpreted to mean that two solutions are possible: One is
© = cos xf8; the other is @ = sin xf. Thus the modes are degenerate

in pairs. The two modes may be thought of as two states of polarization
of the field.
The equation for R is

2
PRyIE L (e - )R =, (52)
TZ

or? r or

where k? = 4% 4 w%u. This becomes Bessel’s equation in the eanonical
form by the substitution z = k,s. The solution for E, is therefore

E, = ex%J (k.r), (53)

where J, is the Bessel function of the first kind of order x. ‘The solution
N, (k.r), the Bessel function of the second kind, is excluded because of the
singularity at r = 0. The boundary conditions may be applied immedi-
ately, since E, must vanish at r = a, the radius of the tube. Thus k. is
determined by
Jylka) =0,
or (54)
ka = txn,

where 1, is the nth root of the Bessel function of order x. The cutoff
frequencies are then determined by

1.\’
2 = [ XxX*].
w? ep.(a) (55)

The smallest value of £, is to; = 2.405. Other values are given in Table
2-2 at the end of this section.
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The other components of the fields are determined in & manner
analogous to that of the rectangular case. Thus,

H. = Jwe dE,  xwe

=Frras — g Ok,
Hy= — 30000 o nari o), (56)
E, = ZsHs, Es= —Z:H,  Zs=——

T jwe
The TM-modes are distinguished by the subscripts TM,,, and the low-
est TM-mode is the TMy-mode. Equation (41) is valid for these modes

if the values of A, given by

X, = 2ra

(57)
byn
are used.

The TE-modes are treated in the same fashion. The solution of the
wave equation for H, leads to the same solution as that for E, in the TM
case:

H, = ex%, (k.r), (58)

but the boundary conditions are determined from Ej, which is

jop 0H,  jem . ..,
Ey = T o =% ex8Jr (ker).

This component of the field must vanish when » = a. If s,, are the roots
of Jj, then

kaa = sy

. AR
we = ; 7 ’ (59)

and the cutoff wavelength is

The cutoff frequency is

X, = 2@, (60)

Syn
The modes are designated by TE,., and the dominant mode for round
pipe is TEq, for which s;; = 1.841. Table 2-2 gives other values of the
roots of J}. It should be noted that the TE-modes also have two states
of polarization except when x = 0. The other components of the fields
are

_ Jou 1 0H.  wux

= — A oix8 o
B iy s~ ke O,
(61)
o= = B oy, = B
r ZHJ ] ZH

The principal formulas and pictures of the electric and magnetic lines
are collected together in Sec. 2-19.
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TasLE 2 2.—Roots oF THE BEesseL Funcrions J, AND J;

Mode Root of | Root = k.a
TEn J! 1.841
TMa Jo 2.405
TE, Ja 3.054
TEo, TMu J,;, Ji 3.832
TEa Js 4.200
TMan Je 5.135
TEa Je 5.30
TEw. J1 5.330
TM, Jo 5.520
TMy Ja 6.379
TEg Js 6.41
TE,, J, 6.71
TEe, TMy, | Ji, J: 7.016

2:14. Higher Modes in Coaxial Cylinders.—In the earlier sections of
this chapter, the principal, or transverse-electromagnetic, mode of
propagation between coaxial cylinders was investigated. It was shown
that this mode can exist for any frequency or, in other words, that the
cutoff frequency is zero. There also exist higher modes of propagation
which have nonvanishing frequencies of cutoff. These modes must
satisfy Eq. (50) or the equivalent equation for H,. The Bessel function
of the second kind is here an admissible solution, since the origin is now
within the center conductor and is excluded. Thus it is necessary to
take a linear combination of the functions of the first and second kinds,

H,

£ [ = AT (k) + BN, (k)] (62)

The boundary conditions for an E-mode are, then, that this quantity
vanish at r = ¢ and r = b.
For the TM-modes, therefore,

_ A _ Ny(ka) _ Ny(kcb)

B~ T,(ka) ~ T (k) (63)
The corresponding condition for TE-modes is
N (ka) N;(kpb). (64)

Jika) — Ty(kob)
The lowest mode is the TE,-mode, where k. is given by the first root of
J (kDN (ka) — Ji(ka)N(kb) = 0.

The value of this root is represented in Fig. 2-10, where a quantity f,



42 ELECTROMAGNETIC WAVES [Src, 2:15

104 defined by the relation

— e = (a + b)m, (65)
02
! \ is plotted against a/b, where
100 I~ (@ + b)r is the mean circumfer-

ence of the two coaxial cylinders.
Thus as a/b becomes nearer to

S 098 unity, the cutoff wavelength ap-
proaches this mean circumference.

096 This is exactly as we should expect,
since the effect of curvature must

094 become small as a approaches b
and the cutoff wavelength must

092 j approach the value for the TE o

0 0z 04 %, 06 08 10 modein arectangular guide whose
b

width is hal i -
Fia. 2-10.—Cutoff wavelengths for the s half the I,nean cireum
TE.-mode between coaxial oylinders of ference. Asthe radius of the cen-
radii @ and b. The curve is a plot of f vs.  {ral conductor roach zer
a/b, where fA, = (@ + b)r. app €s .0’

the TE;r-mode between coaxial
cylinders goes smoothly over into the TE1;-mode within a pipe of circular
cross section. The other components of the field of the TE;;-mode are
derived as before. The values are

H, = et [Jl(kcr)N; (k Z) —J (k i) Ni(kar) ]

_ JoploH, wu N\ art ay _ o a
E’r = — k—z ; W = kZT [Jl(kc7)N1 (kc b) Jl (kc b) Nl(kcr) ]’ (66)

By = do O _ Jon g [J; k)N, (k Z) — (k g) ) ]

- _5
H. = — 75

Er
Zu

The next higher mode will be a TM-mode and will have a cutoff wave-
length greater than the cutoff wavelength for the TE-mode by a factor
of approximately =/2.

2-16. Normal Modes for Other Cross Sections.—There are several
other cases in which it is possible to obtain a separation of the wave
equation for H, or E.. If the cross section of the waveguide iselliptical,
the fields are expressible in terms of Mathieu functions. The solutions
have been investigated in detail by L. J. Chu.! The solution for a

1. J. Chu, “FElectromagnetic Waves in Elliptic Hollow Pipes of Metal,”
J. Applied Phys., 9, 583 (1938).

Hy =
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guide with parabolic walls has been obtained.! An exact solution is

possible also when the guide cross section is an equilateral triangle.?
Many miscellaneous shapes can be treated by proceeding in the reverse

order. Let us take for E, any solution of the wave equation and plot its

Fra. 2-11.—Modes derived by insertion of conducting surfaces perpendicular to lines of
electric force.

contour lines, that is, the lines of E, = constant. Now the boundary

condition for a TM-mode is that E, vanish on the boundary. Hence

the contour E, = 0 may be chosen as the boundary of the cross section.
1 R. D. Spence and C. P. Wells, Phys. Rev., 62, 58 (1942).

2 8. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, Sec.
10-8, p. 393.
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The contour lines now represent the magnetic lines in the transverse
plane. The electric lines are then orthogonal to these magnetic lines.
In a similar way, if H, is assumed to be a solution of the wave equation,
then the boundary of the waveguide for which this solution is valid is
normal to the lines H, = constant. These contour lines represent the
lines of electric force in the transverse plane, and the transverse lines of
magnetic force are orthogonal to them. The cutoff wavelengths are
prescribed when the functions H, or E, are specified, since they contain
k. = 2x/\. as a parameter.

Moreover, if a solution for a simple case has been obtained, it is pos-
sible to derive other cases from it by inserting a conducting surface that
is everywhere perpendicular to the lines of electric force. If such a sur-
face includes a portion of the original boundary of the guide, the cutoff
wavelength will remain unchanged. Figure 2-11 shows several examples
of such derived modes.

It is always possible, of course, to solve the wave equation by employ-
ing all the well-known techniques of numerical integration, perturbation
methods, and so forth. There is a general relation between the cutoff
wavelength and the solution to the wave equation. The two-dimensional
Green’s theorem is

aU 3V  aU oV vV otV
L(Hﬁ?"' % ay)ds - /SU(M2 n ~>dS+ ¢ U—dl
(67)
where the surface integrals are taken over the guide cross section and the

line integral around the boundary. Let us take U equal to V, and let it
represent either E, or H,. Then

aU\ | (oU 92U
[s[(%) +(ay> ]dS - - fSU(M2 +——)ds+95U—dz
(68)
but the first term on the right may be written k[ U? dS, since U satisfies

the wave equation, and the second term on the right vanishes, since
either U or U/ /dn is zero. Therefore,

aU)2 <aU) ]
2 — ) + ds
‘ /S U dS

This quantity is always positive; therefore, for any arbitrary shape, some
transmission mode is possible.

If some approximate form for U is known, A, can be calculated from
this equation. It may be shown that this is a variational expression for
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k2; that is, the function U that results in the minimum value of k2 is
ihe correct value in the sense that it satisfies the wave equation and the
boundary conditions. Therefore, if any function for U is used, the value
of kZ calculated from it will always be larger than the actual value that
is the correct solution to the problem. It is also possible to establish a
systematic method of successive approximations that converges on the
correct values of k. and U for the particular problem. This procedure has
been discussed in detail by J. Schwinger. An example of the results of
such calculations is shown in Fig. 2-12, which shows the cross sections of
several waveguides with flat tops and bottoms and semicircular sides.
The cutoff wavelengths are identical for all these shapes.

2:16. Transmission Losses.—Throughout the preceding sections it
has been assumed that the walls of the waveguide are made of perfect
conductors. A guide with real metal walls has a finite, although large,
conductivity, and this must be
taken into account. The alter-
ation appears in the boundary
conditions. It has been assumed

that the tangential electric field
)

vanishes on the surface of the con- /A R B/

ductor. In the case of a real f
metal, the tangential electric field
does not quite vanish but has the
small value determined by the
product of the conduectivity and
the current density. The current

density is equal to the tangential 05X, ————J
magnetic field at the metal surface. Fie. 2-12.—Various waveguide cross sections
Thus the electric field is altered by having the same cutoff wavelength.

the addition of a small component tangential to the metal. The mag-
netic field is also altered by the addition of a small field normal to the
metal surface, and this normal component of the magnetic field is of the
same order as the tangential component of the electric field. Therefore
some energy flows into the metal. The rate at which power is lost into
the metal per unit distance is

P 1 3 \
&' = —Z-Re (Z,,,) & /;alh ]Ht] ds,

where H, is the transverse magnetic field and Z,, is the wave impedance of
the metal. Since H; varies as ¢~ 7, |H,|? varies as e~(tv"2 which is 2%
Therefore

oP

i —2al.
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The propagation constant is thus no longer purely imaginary but has a
small real part. The change in the guide wavelength is, however, of the
second order of small quantities and can be neglected. The wave
impedance also becomes complex.

The amount of radiation into the metal is found by integrating the
Poynting vector over the surface of the waveguide, choosing the com-
ponent of S normal to the walls. This component is given by

Sn = 3EuHE,.

Since Euws is small, it is permissible to use for Hua. the value that it would
have in a guide of infinite conductivity. At the metal surface the tan-
gential component of the electric field must be

Ehn = Z,,.Hun.
It will be recalled that
o [ dem
Zm \/6 T e 70)
The attenuation constant a can then be calculated from the relation
__tdr 1 _ Re(Z,) .
= Q_PEZ- N ﬁ-p /wallsRe (S") ds h 4P walls [HMI ds’

where the element of area ds is a strip of unit length in the z-direction.
For a good conductor, an approximate value of Z,, may be used, since
we K o. By expansion, it is found that

2.2
Zo = & /‘_";t‘(l_j%’;_g&"_;__i_ ) (71)

For metals, ¢ is usually greater than 107 mhos per meter, e is of the order
of 10—1! farad per meter, and hence even for frequencies corresponding to
w equal to 1013 per second, we/o is only 10~5. Thus even the first power of
we/o may be neglected entirely, compared with unity, and

N CT
Zn = Al5, 1 +J). (72)
o =L /% f [H o2 ds (73)
4P 20 J walls i ’

The attenuation constant « can be calculated explicitly in terms of the
dimensions of the guide and the mode, and the necessary expressions are
given in Sec. 2-19. A convenient way to express the metal losses is in
terms of a quantity & called the ‘““skin depth,” defined by the expression

Hence

Re () = & Re (Z)|Hul? = § Re (Zo)K? = 3o K2
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Thus the metal losses are equal to those which would be produced by a
uniform current K flowing through a surface layer of conductivity ¢ and
thickness 8. Therefore -
2
5= e (74)

and hence & is characteristic of the metal and of the frequency. Table
2:3 shows values of o for various metals, values of & for a frequency of
1019 ¢ps, assuming p = uo, and the relative losses per meter in waveguides
constructed of the various metals. The propagation constant in the
metal is ¥ = \/jwue — w?eu, which, for large o, becomes

wpa

Y= (1+J)"—(1+J) (75)

Hence the fields within the metal fall off to 1/e of their value at thesur-
face at a depth equal to é.

TaBLE 2-3.—SkIiN DeEprH AND RELATIVE Loss orF VaRious METALS

Metal Conductivity o, | Skin depth & for | Relative loss
mhos/meter 100 ¢ps, meters | per meter
Ag. ... 6.17 X 107 6.42 X 1077 0.97
Cu... . e 5.80 6.60 1.00
Au. ..o 4.10 7.85 1.19
Cr. o 3 84 8.11 1.23
Al 3.72 8.26 1.25
70-30 brass.................... 1.57 12.7 1.92
P 0.9 17.0 2.5
Solder.. ... ... ... ... ... ... . 0.71 18.5 2.8

For the dominant mode in rectangular waveguide (Hi-mode), the
value of « is easily determined. From Egs. (46),

[Hea|* = |Ha|* + [H.|?

4a® . ,mx T
= = sin? — + cos? —
a

il

Equation (47) gives the value of P for this mode. The attenuation «
may therefore be written

(76)

& +2b<2a>'
ETD

Thus « is infinite for A\ = 2a and, for smaller values of A, decreases, passes
through a minimum, and increases again, approachmg infinity as A
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approaches zero. Figure 2:13 shows the calculated values of the attenua-
tion in a rectangular copper waveguide for four modes.

2.17. Cylindrical Cavities.—Suppose that a piece of waveguide of
length  is closed off by metal walls perpendicular to the axis of the guide.
If there are electromagnetic waves in the cavity so formed, they will be
reflected from the ends and will travel back and forth until they are all
dissipated in heating the metal. For certain frequencies, a cavity of this

01

0.08

0.06
5 004 \
g ' ™,,
: A
g \ et
§ 0.02 \ N </ Vs
<

001 \ \&%/TEW

0.008

0.006

3 .
4x10°  6x10 10° 2x10* 4x10* ex10*
Frequency in Mc/sec
Fig. 2'13.—Attenuation in rectangular copper waveguide for several modes;a =2 in.,

b = 1in.
kind is said to be resonant; and in exact analogy with the vibrations of a
taut string fixed at both ends, these frequencies are given by the condition
that
1A,

b=

) (77\
where 7 is an integer and )\, is the wavelength in the guide. The discus-
sion of most of the properties of resonators will be found in Chap. 7.
Only the losses in the cavity will be discussed here. These losses are
most conveniently expressed in terms of a quantity called the @ of the
cavity. This quantity @ is defined as the energy stored in the cavity
divided by the energy lost per radian. If the losses occur only in the
cavity itself and not by transfer of energy to other systems, the perti-
nent quantity is the “unloaded” @, which is denoted by Q.. This con-
cept is a natural extension of low-frequency terminology and is useful in
very much the same way, as will be shown in more detail later.
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If the cavity is of resonant length, the field pattern is in the form of a
standing wave having nodes at the two ends and (» — 1) nodes along the
length of the cavity. The stored energy could be calculated by integrat-
ing, over the cavity, the quantities §eE? and §uH?. Likewise the losses
could be found by integrating the square of the tangential magnetic fields
over the walls and the ends of the cavity. This calculation has already
been performed in effect, however, and a value for @, may be derived
from the previous results. The standing-wave pattern of the fields may
be decomposed into two waves of equal amplitude traveling in opposite
directions. It will be shown in Sec. 2-18 that the waves carry energy
with the group velocity v,. If this is assumed to be true, the energy
stored, W, is seen to be

W= (78)

where P is, as before, the power flow in the waveguide. Since

where- XA and ¢ are the wavelength and the velocity in the dielectrie
medium, the expression for the power flow may be written

w = 2k (%)2 (79)

w

The energy lost in the walls, W, can be written

— 4aPl _ 2naP),

w w

Wi (80)

The energy lost in the end plates, W, is given by

1 1
= = — 2
W 2w ./;nd.s oo IH‘I ds,
where the integral is taken over the two ends. This is directly related

to the quantity P by

1 12 9q _ 8P
5 /m]ﬁd ds = 5

where Z,, is the wave impedance. The factor 8 is a combination of two
effects: a factor of 2 because the cavity has two ends, and a factor of 4
that arises because at each end the magnetic field is twice that for a
traveling wave and the second power of this field appears in the equation.

Therefore

8P
Wa = 0602y 81
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The combination of these results gives

LW, W

0= W + T (82)
or

1 al? 482

@™ ®
For a longitudinal H-mode (TE-mode), Z, = (A\,/A)¢; and for a longi-
tudinal E-mode (TM-mode), Z, = (A\/\)¢. Thus @, is expressed in
terms of quantities already calculated. Values of Q, for the various cases
are included in Sec. 2-19. It has been assumed here that the losses in
the dielectric material in the cavity may be neglected. In Chap. 11 the
dielectric losses will be taken into account.

2:18. Energy Density and Power Flow in Waveguides.—To complete
this survey of longitudinal electromagnetic waves, it remains to prove
some general theorems regarding the normal modes and to calculate the
power flow and stored energy in waveguides. It has been shown that the
fields for both E- and H-modes are completely determined once a single
component of the field is known. If either the longitudinal component
of the magnetic field for H-modes or the electric field for E-modes is
designated by V., this quantity is determined by

(Vi+k)V. =0, (84)
where k2 = 2 4+ w?p, and V} is the Laplacian operator in the transverse
coordinates [Eqgs. (33) and (36)] with the boundary condition that on the
guide walls,

V.=0 for E-modes,

V. _ 0 for H-modes,
on

where 8/dn is the derivative in the direction normal to the guide walls.
The values of k2 are the characteristic numbers of the problem which
determine the cutoff wavelength

(85)

27

The cutoff frequency is
k
we = —2, (87)
Ve
and the guide wavelength is given by
1 1 1
MR @
The transverse components of V are
V.= — Lorad, V., (89)

k?
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where grad; is the gradient in the transverse coordinates. The remaining
relation necessary o determine the fields completely is

|Ed| = Zu|Hd, (90)

where the wave impedance Z,, is

Zg =1 for H-modes,
Y (91)
Zy = X for E-modes.
Jwe

It may now be shown that the characteristic functions found in
this way are othogonal. First, if the longitudinal components of two
H-modes are considered, it is to be shown that

/ H,H4dS = 0, (92)

where a and b refer to two distinct modes. By Eq. (84),

szaszdS = / (HMV sz - H:bvsz) dS

kfa

By Green’s second theorem, this integral becomes

aH:b aH:a .
/(Hza o H. on ) dl, (93)

where the integral is taken over the curve bounding the guide and
vanishes by virtue of the boundary conditions [Eqgs. (85)]. For the
transverse components,

/ H. -H,;dS = IZ;Z: / grad; H., - grad; H., dS,
ca'tch

by Eq. (89). The integral on the right can be transformed, by Green’s
first theorem, to

/fmﬁﬁﬂ fHJmmw=/Qm%%ﬂ

+k§b/HmH,de. 94

The first integral vanishes because of the boundary conditions, and it has
just been proved that the second integral vanishes. Because the trans-
verse electric fields are proportional to the transverse magnetic fields,
the orthogonality of the electric fields also is proved.

The proof for two E-modes is exactly analogous. For the longi-

-
a .,-v‘// -

EGaclLmrary | “ ¢
£ xﬂa,,_nQAN“q o

,
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tudinal fields the integral in Eq. (93) again applies, with E, written for H,.
The integral again vanishes because of the boundary condition E, = 0.
For the transverse components there is an expression similar to Eq. (94)
which vanishes in the same manner. For one H-mode (@) and one
E-mode (b), the longitudinal components are orthogonal;

/ H,HadS = / EwEsdS =0, (95)

since
E,.=Hz=0.

For the transverse magnetic fields,

/ H;,-Hp dS = kz:ng / grad¢ H.; - Z,n X grad: E,» dS,  (96)
where n is a unit vector in the z-direction. The integral may be trans-
formed into

/ div; (H,sn X grad¢ E») dS — / H., div, (n X grad; E,) dS.

The first integral may be changed to a line integral which vanishes, since
n X grad; E,, is tangential to the guide walls. In the second integral,

div, (n X grad; E,;) = —n - curl grad E,, = 0,

and hence the transverse magnetic fields are orthogonal. The proof for
the transverse electric fields is almost identical. Thus it is clear that the
longitudinal components of the electric and magnetic fields and the
transverse components are all separately orthogonal for any two different
modes.

It remains now to show that the energy flow for two modes contains no
mixed terms. If two H-modes are considered. the power flow contains
terms such as

p:/E,.,XH;';,-ndS=/HanXHZ'i'ndS
= /H..,-H;',‘,dS=0, (97)

as has already been shown. The argument is identical for two E-modes,
and for one H-mode and one E-mode. Thus when several modes exist
at the same time in a waveguide, the flux of power of two modes can be
computed independently and added. It should be noted that this is not
true for the loss in a waveguide, since there can be a mixed term of the
form HH ., the integral of which does not vanish.

Expressions for the stored electric and magnetic energy in a waveguide
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will now be given.  First, for H-modes, the electric energy is

1 1wt
We =Ze/|E;[2dS=Ze%/IgradtHzlzdS,

the factor being 1 because an average has been taken over the z-direction.
Using Eq. (84), this becomes

€ — J‘_ w2
We = i€ (98)
The ecergy associated with the longitudinal magnetic field is
wp = / |H.|2dS, (99)
and the transverse magnetic energy density is
wp =2y [ 1HPas = - 202 [ 28 (100)
¢ 4 t 1 M kz z .

The total magnetic energy is

Wp 4+ Wp =5 ( )/|H|2ds_i‘“‘° /1Hlﬂds (101)

which is equal to the total electric energy. The rate of flow of energy is

1 1, <
P = éRe EtH;k dsS) = —EZH'ﬁ WHz‘zdb

The velocity » by which energy is transported is the rate of flow of energy
divided by the energy density, or

3 1 T2kt A 1
UE T et TN, Ve (102)
Now the phase velocity of IT-waves is
w A, 1
Ty = DY \/.E;’ (103)
while the group velocity is, using Eq. (88),
vy =% - 1 g 1. (104)

B Ve NVEE+ B V)
Thus the velocity of transport of energy is equal to the group velocity.!

1 For a precise discussion of the five velocities (front, phase, signal, group, and
energy-transport velocity) that are associated with wave motion, the reader is referred

to an excellent article by L. Brillouin, Congrés International d’ E’lecmczté Vol. 11, 1™
Section, Paris, 1932,
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There are analogous expressions for E-modes
1 1 22
wm=zy/WHmdS=zﬂ%%/WEyd&
2
W3 =ée/ B2 dS = —i%/w,pds,
¢ ) (105)
Wy =1 e/ |E.[2dS,

P= zE/|H,|2ds=%zE%zf[Ez|2ds.

[T

Here again, therefore, the total stored energy is equally divided between
electric and magnetic energy. It can be shown as above that the same
expressions for v, ¥4, and v hold for E-modes as for H-modes.

2-19. Summary of Results.—The survey of the classical electromag-
netic theory of both transverse and longitudinal waves has been com-
pleted. It remains only to summarize the results in a manner that will
be convenient for ready reference. For each of the modes that are of
practical importance, the specific form of the fields will be given, together
with the cutoff wavelength, formulas for the power flow and the attenua-
tion, and the expressions for the unloaded @ of a cavity n half-wave-
lengths long.

Coaziel TEM-mode—The transverse cross section of a coaxial trans-
mission line operating in this mode is shown in Fig. 2-14. The fields are

given by
BE,=H,=Ey=H, =0,
I I
Be=Sgr He=gp

where [ is the total current in either
the inner or outer conductor. The
power relations are

I? b
4r § ’
2 1 1 1
o = ~— —_—_ = iy
o\ T i2)
ln -~
a
Fig. 2-14.—Transverse cross section l = —2— n ——)\ l + ,_1_ + 2 .
of coaxial transmission line operating in 0 méa 1 b a? b n
the TEM-mode. na

The Hirmode (TEic-mode) in Rectangular Waveguide.—The field
configuration for this mode is shown in Fig. 2-15. The equations for the
fields and the power relations are
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Tz
H, = cos —>
a

.2a ., mx
EZ—O, HZ_J—)CSInTi,

.20 _ . wx
E,,=—]7§‘sm%: H, =0,
a®h
R¢=2a, P=_>\?§7
g

Fig. 2-15.—Field configuration Fic. 2-16,—Cross section of waveguide for
for His-mode (7T Ei-mode) in rec- T E 2-mode.
tangular waveguide.
The Hap-mode (TEj~mode) in Rectangular Waveguide.—The cross
section of a waveguide carrying the TEj;-mode is shown in Fig. 2-16

The equations are

H,=cos%;
a
E. =0, H, =i 2 gin 275,
Ag
.a . .
E, = —ng'sm—; Hy =0,
1a%
)\c—a, P—I-ﬁb
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The Ei-mode (TMi-mode) in Rectangular Waveguide—The next
mode that can be propagated in a rectangular waveguide, as the frequency

'
I

A
TS

is increased, is the Hoi-mode, pro-
vided that the dimensions are such
that 2b < a. The relevant equa-
tions can be easily obtained by set-
tingz = yanda = binthe Hi-mode
equations. A further increase in
frequency allows the E.;-mode to

propagate. The transverse fields
Fig. 2-17. —Transvel se fields tor the En-  for this mode are shown in Fig. 2-17.
mode. The fields are given by
E. = sin 7T sin 1Y,
a b
. A2 T Ty RS . T Ty
E, ]2(1)\ cos—sm—b—, H,—]zb)\nsm 2 COf g
.. N Y RS T . 7Y
E, J 2bx, sin = = cos 3% Hy = —j g 1 €08 o sin 35
A = 2ab P -—1 (11)_)\_3
¢ 1/a2+b2, —8‘”)\)\’
_2, et ]
I i Y] e

@ + b

1l _ 2
Qo = 7o " \ab(a? ¥ 05

[ -1

The Hi-mode (TE1-mode) in Round Waveguide.—The TE;-mode is

the dominant mode in waveguide of circular cross section.

The fields

are shown in Fig. 2-18. The field and power relations are

JFia. 2-18. -Fields for the TE;-mode in
round waveguide.

F1a. 2:19.—Fields for the TM-m mode in
round waveguide.
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H, = oi%], (.s-[. i>,
[(3
A
E,- = )\r§'67 J1(3115> H,- = —]'—DC]BJll(Sllzl—'))

- E ’ A )\2 y
Ey=j Tg_ ety (&16)" Iy = 27r)\,,l s ( a>,

where s;; is the first root of the Bessel function J7;

S11 = 1841, )\c = 1706(2(1),
1At sk -1
T, 2

e M,
1 1] 1 Y A"\
=wnila = Q) -G)T
1 1 [ 1 MY 4 YW
@ alg = Q)1+l -G©)T)
The Eqi-mode (TMqi-mode) in Round Waveguide.—The lowest mode
with circular symmetry is the Eq-mode which is of considerable practical

importance. The fields are shown in Fig. 2-19.
are

P=

The relevant equations

E, =

.2
By =0, Hy= —j5 6<to1%);
where to; is the first root of Jo; it has the value

|
|
.
> |
B
&
=
o
e
Q1
<~
o)
s
Il

for = 2.405, . = 1.306(2a).

T'he power relations are

1 M
= & tnd p{ta)]? = 0. 0620 )\)\ n,
1

HRTACE
@ 6o K a 5; !
1§, 4a AN\
% —a+n—x[1 ‘(xt)] -
The Hy-mode (TEz-mode) in Round Waveguide.—The next mode in

round waveguide, in order of decreasing cutoff wavelengths, is the H;-

mode. The fields are shown in Fig. 2-20. The equations for this mode
are
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Hz = €2jaJ2 (821 1)7
a
A2 D VN
E = e 5'62’0112 (821 '2‘)! H, = —J )\— ez“’J; (Su 2))

g

2
Eo = J?l)\g g'emJ'z (Szl 2)} Hg L ezian <Sg1 (—71")7

wAT
85 = 3.054, e = 1.029(2a),
-1 _)‘:’. sHh—4 ., . A
P= ir AN, ¢ 2 J3(s21) = 0.0500 Ve I

== anilg s ()-GO T
& il G ]2 -G)T)

The Hy-mode (TEy-mode) in Round Waveguide.—The first H-mode
with circular symmetry is the TE¢-mode. The fields are shown in Fig,.

Fig. 2:20.—Fields for the TEj-mode in F1ac. 2-21.—Fields for the TEo-mode in
round waveguide. round waveguide.

2:21. The field equations are

Hz = Jo (8011):
a

E"=Oy Hr: “j;\\—:"6<801:‘—1>1
By = e, (sm 1), Ho=0

A a ’
So1 = 3832, )\c = 0820 (2(1)

The power relations are
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= L X 2 3(ser) = 0.0948 M ¢
= Bran, o olSo) = 0. W,

LI QT
b b - 0)T)

It should be noted that the attenuation for this mode has the unique
property that it decreases continuously with decreasing wavelength.

a =

Fra. 2-22.—Field configurations for TM1;-mode in round waveguide.

The Err-mode (TMi~mode) in Round Waveguide.—The chief imper-
tance of the Eii-mode lies in the circumstance that it is a degenerate
mode, having the same value of cutoff wavelength as the Hy;-mode. The
field configurations are shown in Fig. 2-22. The equations for the field

components are
. r
E; = e”Jl (tu E),

D VI r A2 , r

E,. = —J ;\—”‘ e“’Ji (lu E)) H,. = 2_1rﬁ ne”’Jl (fu E))

A2 : W
o =g en () men i ()

)

tu = 3832, )\; = 0820(20/),

= L X Tl = 00518 2

- 8 )\)\y N1 1l - V. )\)\y L3

1 1 AN\
=gl =) ]




CHAPTER 3
WAVEGUIDES AS TRANSMISSION LINES

By C. G. MONTGOMERY

3-1. Some General Properties of Guided Waves.—In the previous
chapter, it was shown that waves may travel in hollow pipes in many
modes of transmission and that for each of these modes there is a cor-
responding cutoff frequency. For frequencies below the cutoff frequency
the energy in the mode is quickly attenuated; above the cutoff frequency
it is freely transmitted. The most important condition in practice is
that in which the frequency lies above the cutoff frequency for the lowest
mode but below the cutoff frequency for the next higher mode. The
lowest, or dominant, mode will then propagate

T jxz_ | Obstacle -jkz energy in the waveguide. Let us take as the
Be 22 Ce direction of propagation the positive z-direc-
— tion. Letussuppose that thistraveling wave

Fia. 3-1.—Electromagnetic encounters an obstacle in the waveguide, such
oves fir'éfi.d::ib:fﬁe i‘;“v‘?m':'_ as a condu.cting wire placed across the guide.
guide. In the neighborhood of this wire, the so-

lution of Maxwell’'s equations that corres-
ponds to the dominant mode will no longer suffice to satisfy the boundary
conditions. There must be, in fact, other modes present that are excited
by the currents flowing in the wire. These higher modes, however, are
not propagated, and their amplitudes die out rapidly in both positive and
negative z-directions away from the wire. The actual fields near the
obstacle are determined, of course, by a solution of the electromagnetic
equations that satisfies the particular boundary conditions imposed by
the geometrical configuration. The higher modes can be regarded as
representing a kind of Fourier expansion of the fields near the obstacle.
For rectangular waveguide in which the TE,r-mode is the dominant
one, the expansion is an actual Fourier series in terms of sineg and cosines;
for more complicated cases it is a generalized expansion in terms of other
functions. One member of this expansion will be the dominant-mode
term representing a wave progressing in the direction opposite the inci-
dent wave, that is, a reflected wave. On the far side of the obstacle and
some distance away from it only the dominant mode exists progressing
in the positive z-direction but having a reduced amplitude. Some of the
energy has been reflected; some may have been absorbed at the obstacle.
The resulting situation is illustrated schematically in Fig. 3-1.

60
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To the left of the obstacle there is an incident wave of amplitude A
and a reflected wave of amplitude B. To the right there is a transmitted
wave of amplitude C. Each of these waves varies sinusoidally with
time, the transmitted wave being

j{wt—
CeJ w xz)}

where the amplitude C is to be regarded as complex and hence contains
the phase of the wave. Only the case in which the losses along the wave-
guide can be neglected, and hence « is real and x = 27/, will be consid-
ered. At some distance from the obstacle, the field is completely charac-
terized by the amplitudes of the reflected and transmitted waves, and
for many purposes it is not necessary to enquire further into its nature.
It may be assumed without loss of generality that the amplitude A is real.

To the left of the obstacle there are two waves, of amplitudes A and B,
traveling in opposite directions. The amplitudes A and B will be taken
proportional to the transverse electric field at some point in the transverse
plane. This is purely a convention; the transverse magnetic field could
have been chosen instead, and the only differences would be those of
sign in certain expressions which will be derived. The significance of
this will be seen later. These waves may be thought of as being repre-
sented by two radius vectors in the complex

v.'
plane, as in Fig. 3-2. Let ¢ be the argument of i ]
B. The resultant of the two vectors is then & Be 1)
proportional to the total transverse electric &
field. The incident-wave vector lies along the £ ?
real axis att = 0, 2 = 0. For a constant value Ae Hwt~Kz)
of z, both vectors rotate together counterclock- Real axis

. . i Fic. 3-2.—Vector repre-
wise at a constant angular velocity w as { in-  sentation of waves in the

creases. If ¢is constant, motion along the guide ~ °0mplex plane.

in the direction of increasing z corresponds to a clockwise rotation of the
incident-wave vector about the origin and a counterclockwise rotation of
the reflected-wave vector.

The amplitude of the resultant wave will thus pass through a mini-
mum value when the vectors are oppositely directed, increase to a maxi-
mum, decrease to a minimum, and so on, as the obstacle is approached.
The incident and reflected waves may therefore be resolved into a travel-
ing wave and a standing wave. The distance toward the obstacle from
the first minimum in the standing-wave pattern is given by

_T—¢
2k (D

This description can be expressed more precisely. The resultant
transverse field F is the sum of the contribution of two waves
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F = Aei(wl—xz) + Bej(ut+|(z)
e:wt[Ae—ixz + Blei(lﬂ'dﬁ)],

It

where
B = B167¢.

The addition and subtraction of Bie=#*+% results in

Fe-iwt = De=ix+i® L 2B cos (kz + ¢),

where
D =|A — Bie ¥ = (A% 4+ B} — 2AB; cos ¢)%
is real and
_ B sin ¢
— 1 Y .
0 = tan A — B, cos ¢

The first term is the traveling wave of amplitude D, and the second term
is the standing wave of amplitude 2B,.

It is easy to measure a quantity proportional to the amplitude of F
by inserting a small probe in the waveguide, and in this way the standing-
wave pattern can be measured. The methods for making such measure-
ments are discussed in detail in Vol. 11 of this series. The standing-wave
ratio will be denoted by r. Tt is given by

Pl _ Al +1B] _ 4+ B,
[Flow ~ 141 — Bl = 4 — B,

Commonly, 7 is expressed as a ratio of fields at points along the wave-
guide, but it may also be expressed as a power ratio P, in decibels. The
connection is

r

P = 10 logy, r2 db, (2)

since power is proportional to the square of the transverse electric field.
The quantity P is not directly related to the ratio of power transfer at two
points but merely furnishes a convenient manner of expressing a ratio,
particularly when the ratio is large. The quantity r is always greater
than unity except when there is no reflected wave, in which case it has
the value 1. It is clear that since only the amplitude of the field is
measured, the standing-wave pattern has a period, with respect to z,
twice that of the incident wave, and that the distance between successive
minima is only one-half wavelength. Moreover, the time phase of the
standing-wave portion of the field is constant for a half wavelength and
then changes abruptly by = for the next half wavelength. One other
parameter is necessary to specify the standing-wave pattern. This other
parameter is conveniently expressed as the distance, measured in wave-
lengths in the waveguide, from some reference plane in the obstacle to
the first minimum, and will be denoted by d/A, = (x/2m)d. This quan-
tity is dimensionless and is therefore sometimes called the ‘“phase” of
the standing-wave pattern.
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Another parameter that is convenient for characterizing an obstacle
is the “reflection coefficient.” This is defined as the ratio of the ampli-
tude of the reflected wave to the amplitude of the incident wave and s
denoted by T'. It is given by
_ Be* B, (2xs+eb)
= A= = AT e . (3)
Thus T' is a complex number whose magnitude B;/A varies from zero
to unity and whose argument is a function of position along the guide
and of the phase of the reflected wave. 1t is possible, of course, to

relate T to the standing-wave ratio;
B,

_A+B _'tT 14 @
A-B | _B T-1f
s
and
r—1
Il = 7+ (5)

At the position of the minimum in the standing-wave pattern, the phase
of I'is 7, and

B,
-7

At the maximum, the phase is zero and I' = +B,/A. If the phase of T
at the reference plane of the obstacle is 6, then

0 =1+ 2xd + ¢. (6)

The period of I" with respect to z is w/«, or a half wavelength.

It has so far been tacitly assumed that it is unnecessary to consider
what happens to the reflected wave as it travels away from the obstacle
to the left. If it is absorbed in the generator that produces the incident
waves, there is no difficulty. Suppose, however, that the generator
reflects the wave with a reflection coefficient T'i. The wave reflected
from both the generator and the obstacle is traveling to the right with an
amplitude TT1A. This wave will be reflected from the obstacle a second
time and then again from the generator. The total amplitude A’ of
the waves traveling to the right will be

A" = A+ TTA + T4 + - - -,

T =

which converges, since |ITTy| < 1. The total wave amplitude traveling
to the left will be

A+TTA+DTA4+ - =T4"

Thus the whole effect of a reflection from the generator is to change the
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amplitude of the incident wave from A to 4', and the situation is other-
wise unaltered.

Some simple relations between the transmitted power and the reflected
power, in terms of I' and r, may now be written. The fraction of the
power reflected, Py, is

P, =TT* = T|* = (T - 1)2.
r r +

The fraction of the power transmitted by the obstacle, Py, is
C

Y|

2

P, =

The insertion loss of the obstacle is defined as L = 1 — P, and is made up
of the reflection loss P, plus the power absorbed in the obstacle. It is
not possible to measure 4 directly because of the standing waves to the
left of the obstacle. It is possible, however, to measure the ratio of the
field amplitude on the right to the field amplitude at the maximum or
minimum of the standing-wave pattern; that is, the quantities

o,
A + B, A — B,
can be measured. Therefore,
L=1-P=1-— 4
‘ (4 + By)?

-1 ICE — e
or
_,__ lcp® 4r2 |C* 4
L=t “lT@-Brernr @

A+ B+ 1)
The input power to the obstacle, P, is
P, = A? — B} = (A + B)(4 — By) = |F|mes|Fmia

Let us consider the simple case where the obstacle is a transverse
plate of metal entirely across the waveguide. The transverse electric
field is zero over such a plate, and the incident- and reflected-wave
vectors must be equal and opposite. Thus ¢ ==, ' = —1, ¢ =0,
r = w, and d/A, is zero or 4. If the obstacle consists of a transverse
magnetic wall over which E, is a maximum but H; = 0, then ¢ = 0,
I'=1,08=x, r= o, and d/A, is 1. These two cases are called the
“short-circuit”” and the ““open-circuit’’ cases respectively.

3-2. Low-frequency Transmission Lines.—The reader familiar with
conventional transmission-line theory may by now have become sus-
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picious. Standing waves, short and open circuits, and other things usu-
ally associated with ordinary low-frequency circuits where currents and
voltages and not electric and magnetic fields are taken to be the funda-
mental quantities have been mentioned. These suspicions may be lulled
by establishing more explicitly the connections with low-frequency cir-
cuits. It should be emphasized, however, that up to this point only the
fact that there are waves traveling down a waveguide and being reflected
or transmitted by obstacles has been utilized, and therefore the results
are completely general. But one restriction has been made, namely,
that only the dominant mode can be propagated in the guide.

In a coaxial transmission line, energy is propagated in the principal
or TEM-mode. In Sec. 2:7 the expression for the fields and the equa-
tions that they satisfy have already been derived. It was found that if
losses are neglected,

JdE,

oF, 0H,
daz

= —jwuH,, o —jwek,.

The solution of these equations is

I 1
B=toy Ho=gy
where I is the total current flowing in the walls of either the inner or
outer conductor. These equations can be put into a slightly different
form. If the voltage across the line is defined as

b
V=/ E. dr,

this value of V' is independent of the path of integration from the inner
to the outer cylinder provided only that the path be restricted to a trans-
verse plane, since H is purely transverse. If the equations are inte-
grated with respect to r over such a path, and if 7 is substituted for 2xrH,,
then

1n§
WV w01 o _ _. 2y
9z Mo b gy T TJee— V-

In -
a

These equations are a special case of the general transmission-line
equations

v oI
5= —Z, 5 =YV, (9)

where Z and Y are the series impedance and shunt admittance per unit
length of the line. These equations are rigorously true for the coaxial
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line if
b
In -
Z=jousl  amd ¥ = jue 1?_9 (10)

These values could have been found, not only from Maxwell’s equations
directly as has been done here, but also from a calculation of the induct-
ance and capacitance per unit length between coaxial cylinders. For
transmission lines of other shapes, such as parallel wires, Eq. (9) is valid
if the usual low-frequency approximations are made. The values of
Z and Y will, of course, be different; they will be those characteristic of
the particular line under consideration. The solution of Eq. (9) may now
be written as the sum of waves traveling to the right and to the left of
the point of observation
V = Ade* 4+ Bev,
1

—_ -—-z__l__ F] (11)
I—Zer'f oBe",

where Z, is the characteristic impedance of the transmission line and
y is the propagation constant; thus

Z, = \/TZ, and y = \/ZY. (12)

The transmission-line equations may be conveniently rewritten in terms
of these parameters, since

Z = ~Z,,
1
=X =47, (13)
Equations (9) become
vV ol
_(_9; = _'YZOI; —a—z = —‘YY(]V- (14)

These equations represent waves of voltage and current, instead of elec-
tric and magnetic fields, but the discussion of reflection coefficients,
standing waves, and so forth, of the previous section is valid here also.
A new concept, however, has been introduced: the “impedance” at any
point on the line, which is the ratio V/I. This quantity is uniquely
defined. This is true for a coaxial line at any frequency for the principal
mode or for a more general type of transmission line at low frequencies
where the ordinary ideas of circuits and circuit elements are valid. No
unique definition of V/I in a waveguide can be made, since (1) the cur-
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rent for a given value of z is a function of the coordinates in the zy-plane
and (2) the line integral of the electric field is not independent of the end
points, even though the path of integration does lie in the transverse
plane. Impedance is such a useful concept,
however, that it is desired to retain its use
for waveguides, and some generalization
must be made. Before proceeding with the
generalization, the results that are valid at ,_, 2=l
low frequencies will be reviewed. Fic. 3-3.—A transmission
3.3. The Transformation of Impedances. line terminated by an im-
Let us consider a line terminated at z = I by pedance Z(h.
an impedance Z = Z(1), as in Fig. 3-3. Equations (10) are subject to
the boundary condition that

Incident wave
e —

Reflected wave
-

|40
0 =Z®.
Thus,
Ae" + Bet
ZO =T = % gt = e (18)
The voltage reflection coefficient is
_B i _ZU) = Z,
Fv—Ae7 —Z(l)+Zo (16)

"The current reflection coefficient can be defined as the ratio of the reflected
current wave amplitude to the incident current wave amplitude. Hence

B —Z({1)

Zo

I'y= — Z e = m

Some authors, in the discussion of transmission lines, prefer to use the

current reflection coefficient instead of the voltage reflection coeflicient.

In this chapter the voltage reflection coefficient will be used, and the
symbol T will be understood to be equivalent to I'y.

Equation (16) is the transformation equation of T along the line; now

the transformation equation for Z must be found. At z = 0, the input

impedance is

= —T'v.

B
fu=zAEE_ g T
in = OA_B— Ol_E

A

The elimination of the ratio B/4, by means of Eq. (16), has the result

Z({) + Z, tanh ~I

Zi = 207 "7 tanh 4l

(1mn
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It should be emphasized that Eq. (17) is a direct result of the boundary
conditions imposed on 4 and B by specifying a termination Z(I) on the
end of the line. It is worth while to restate more explicitly what has
been done. It has been shown that the total or transmitted voltage
across the load Z(l) is the sum of an incident and a reflected voltage wave,
and that the transmitted current is the sum of an incident and a reflected
current wave; that is

Vi+Vr=Vt, Ii+1,=1.

These currents and voltages are separately related by means of the
impedance; thus

Vi= 2, V.= —Z., V.=ZOI.

These two sets of equations state the boundary conditions in a form
that makes obvious the circumstance that the currents and voltages com-
bine additively at a boundary. It is possible to solve for

o Ve _Z0 =2 _ L _ .,
YTV, Zh +Z, L "
The other ratio,
o Yo 2Z()
M= =gz, =t (18)

can be defined as the voltage transmission coefficient. When these
relations are combined with the fact that V and I transform along the
lines as waves with a propagation constant vy, Eqs. (16) and (17) can
again be derived.

It is also possible to express the relationships between these quantities
in terms of admittances, which are simply the reciprocals of the corre-
sponding impedances. Thus

! S
Yo = Z7 Y{) = Z0 Vi = 7
The formulas become
_ YYD _ e
M=y, 3vq = T (19)
_ Y() + Y, tanh ~1
Yo = Yoy T Y () tanh I’ (20)
T, = _2Y, 1+7T (21)
VT Y.+ YD) v

When it is possible to neglect the attenuation in the line, v is purely
imaginary; and if ¥ = jk, the expressions become

Z(l) + jZ, tan «l

Zn = 207 570 tan o

(22)




Skc. 3-4] POWER FLOW 69

Y1) + jY, tan Kl'
Yo+ 7Y () tan «l

When the line is terminated by a short circuit, Z(I) = 0, Y () =

Yo=Y, (23)

Zuhort = ]Zo tan Kl,
Yshon = —]Yo cot Kl.

For an open-circuited line, Z(I) = «, Y(I) = 0,

Z e = —JZ, cot «l,
Yeopen = jY tan «l.

If 1= N\;/4, tan «l = tan 7/2 =  and the input impedance and
admittance become

Z2
7 = 28,

g (24)
Vo= vy

Thus a quarter-wavelength line inverts the impedance and admittance
with respect to the characteristic impedance or admittance.

One notable characteristic of all the expressions for T, T, Zi, and Y
is that they can all be written in terms of relative impedances. For
example, Eq. (17) may be written

Z(Z) + tanh vl

Z (l)

VA 1 4+ 20

tanh l

It is just this circumstance which makes these expressions valuable for
use with waveguides, where Z, cannot be uniquely defined. Thie
characteristic is really only a result of the wave nature of the solutions
to Maxwell’s equations, not of any special assumptions that have been
made. This point will receive further consideration later.

3-4. Power Flow.—The power flow into a line is, of course, given by
the real part of $Viw.[%, or

P =} Re (Vil¥) = 4 Re (Zi)!Ia]> = 7 Re (Yu)|Vil® (25)

This result is not to be derived from the transmission-line equations but
represents a second physical property of the quantities V and I. It can
be proved in the low-frequency approximation for the ordinary cireuit
equations. This will not be done, however. The result is fundamentally
a consequence of Poynting’s theorem. Tn the case of a coaxial line it is
possible to verify Iq. (25) by substituting for V and I the values of the
field strengths and integrating over the area of the line. It is more
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helpful to think of the equation as an expression of a physical character-
istic of the quantities ¥V and I that they must satisfy in order to maintain
consistency with the fundamental electromagnetic equations. All the
remarks made in an earlier section relative to the power carried by the
incident and reflected waves in relation to the reflection coefficient and
the standing-wave ratio are still valid here.

3.5. The Combination of Admittances.—Let us suppose that an
admittance Y is shunted across an infinite line of characteristic admit-
tance Yo, as shown in Fig. 3-4a, and that there is a wave incident from the

« 8
] I
q ] —— | _L— !
—_—— Y2 Y, _, Y, I;Yz% 7S TN : Bz _ |l
I \
() (b (o)

F1a. 3-4—The combination of admittances and reflection coefficients.

left to the right. The admittance to the right from a point just to the
left of Yis Y 4 Y, and the voltage reflection coefficient is

_Y
T Y 27,

Let us now regard Y as made up of two admittances Y, and Y, in parallel.
The total admittance is Y, + Y, 4 Y,, and the reflection coefficient is

I (R CUN
Y, F s + 2%,

Thus the law of combination of admittances is simply additive. Itisnow
of interest to know the law of combination of reflection coefficients.
Suppose that the Y, mentioned above is shunted across the line. Let
the reflection coefficient be . Let 8 be the reflection coefficient when Y,
is shunted across the line. The problem of how « and g8 should be com-
bined to give the value of I' above may be treated by considering suc-
cessive reflections of the waves.

Let us assume that the wave is incident first upon Y,. There will
be an incident wave whose amplitude may be taken as unity, a trans-
mitted wave of amplitude z, and a reflected wave whose amplitude it is
desired to find. Let the amplitude of this reflected wave be v as indicated
in ¥ig. 3-4c. The wave of amplitude z is made up, of course, of all the
waves traveling to the right resulting from the successive reflections
between the two admittances. It may be regarded, however, as being
made up of the transmitted wave 1 + a from the first admittance plus
the sum of all the reflected waves from the second admittance which are

r (26)

I' =
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again reflected from the first admittance; thus

=14+ a+ ofz.

Likewise
¥y = a+ Bz(l + a).
If z is eliminated,
_ A+ a)?
v=at g @7)

Thus the law of addition is a very complicated one indeed. To verify
this result, the expression —2v/(1 4+ v) may be formed, which is
2y _ 2a 28

1+~ 1+a T1+8

From Eq. (26),

Yy -—2r

Y, 1T+T
Thus the law of additivity of shunt admittances has been verified from
the wave picture.

The argument just stated could have been carried through using the
concept of an equivalent series impedance that combined simply with
another series impedance. Again the reflection coefficients do not com-
bine simply. This is another aspect of the importance of the admit-
tance or impedance concept for use in waveguides, where neither currents
nor voltages may be uniquely defined.

3-6. Transmission-line Charts.—It has been shown, in the preceding
section, that a reflection in a transmission line can be described in several
alternative ways. Each of these ways is convenient for certain problems;
all are in common use. A reflection can be described by any of four pairs
of variables:

1. The standing-wave ratio and the position of the minimum, r and d.
2. The real and imaginary parts of an equivalent shunt admittance
Y/Yo=G/Yo+ jB/Y,.
3. The real and imaginary parts of an equivalent series impedance,
Z/Zy = R/Zy + jX/Z,.
4. The modulus and phase of the voltage reflection coefficient,
= |Tje™®.

A fifth pair of parameters is sometimes used, namely, the modulus
and phase of the current reflection coefficient. Since it has already been
shown, however, that Iy = —TI'v, this represents a more or less trivial
addition. It must be remembered that impedances and admittances
occur only as the ratio to the characteristic impedance and admittance
of the transmission line, and therefore all of these parameters are dimen-
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sionless quantities. The four pairs of parameters listed above are
related to one another by equations that have been stated in the pre-
ceding sections. Each of the complex quantities I', Z/Z,, and Y /Y, may
be regarded as a function of a complex variable, but this is not true of

the quantity re. The fundamental relations that have been derived
above are

Z -7, Yy—-Y

= i* — = ,

' = |I|e 7572, Y. ¥ T

_1+41r _¢—
T—l_lrr Kd— 2

These relations may be separated into their real and imaginary parts.
Thus,

Lo LA VEAIP+H X+ VR 1)+ X0
1-T vVE+1)P+X:— VR -1)?+ X
_V@G@+ 1)+ B+ V(G —1)"+ B

= » (28
VeI B - VO - B :
_¢—7 _1 _ 2X T
e N Al S chs
1 2B
= 2'oan“1G2 T g; (29)
M =r=1_ [B-D %X _ G-+ B 30)
Tr+l O N®RADE+X: NG+ 1)+ BY
2X 2B
¢ = 2xd + 7= tan—! mj—l = tan—! m! (31)
_ r _ 1 —|rj? @ 32)
T rcostkd +sintwxd 1 — 2T cos o+ TP G+ BY
x - 4= 7?) sin kd cos «xd _ 2|I| sin ¢ _ —B 33)
T rtcostud + sinfkd 1 — 2|T|cos ¢ + T2 G+ B
_ T _ 1 — |T|? _ R 34)
= rrsin’kd + cos’xd 1+ 2[T[cos ¢ + |T|2  REF X?
B = (r2 — 1) sin «d cos xd —2|T'| sin ¢ __—X 35)
T " rsin’kdcos’kd 1+ 2[T[cos ¢ + [T|2 R?2+ X?

For convenience of notation Y, and Z, have, in the above equations, been
set equal to unity. The values of R, X, G, and B above are thus measured
relative to the characteristic impedance or admittance of the line.

The transformations represented by the above equations are con-
formal—the true values of angles are preserved in the transformation.
They are also bilinear transformations, that is, of the form

_aw+tb
T eow 4+ d
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Thus it is possible to apply many general theorems which are well known
for transformations of this type.

These equations are sufficiently numerous and complicated that some
graphical method of handling them is almost essential. Fortunately,
a method exists that is convenient and easy to use, whereby these 24
relations can be represented by a single chart. This-chart, designed by

Fi1G. 3-5.—The Smith impedance chart.

P. H. Snich,! is illustrated in Fig. 3-5. The quantities |T'| and ¢ are
chosen as polar coordinates, and lines of constant R and constant X are
plotted. The region of interest is within the circle of unit radius, |T| = 1.
The family of curves R = constant, X = constant consists of orthogonal
circles. In terms of rectangular coordinates u and v in the I'-plane, these
circles are given by

R Y 1
“‘R—ﬂ) s mTe
2
(u—1)2+(v—)l() =%-

The R-circles all have their centers on the u-axis and all pass through the

point © = 1, » = 0. The X-circles all have their centers on the line

u = 1, and all pass through the point u = 1, v = 0. All values of
' P, H. Smith, Electronics, January 1939, January 1944.
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from zero to plus infinity and all values of X from minus infinity to plus
infinity are included within the unit circle. Thus there is a convenient
means of transformation from |I'| and ¢ to R and X and inversely. If
the reference plane is moved nearer to the generator, that is, in the nega-
tive z-direction, the vector T rotates clockwise, making one revolution in
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RorG
Fia. 3:6.—Impedance chart with rectangular coordinates.

half a wavelength. An auxiliary scale outside the unit circle, running
from 0 to 0.5 around the circumference, facilitates this transformation.
Curves of constant standing-wave ratio are concentric circles about the
origin which pass through the points »r = R. The parameter d/A, is
read on the external circular scale. The relation between impedance
and admittance is obtained in the following manner. A shift of reference
plane of one-quarter wavelength inverts the value of the relative imped-
ance; the shunt admittance equivalent to a series impedance is given,
therefore, by the point diametrically opposite the origin from the imped-
ance point at the same radius. Moreover, it is apparent from the trans-
formation equations that if |T'| is replaced by —|T|, then R mu-* be
replaced by @ and X by B. Thus the same chart may be used for admit-
tances provided the value of ¢ is increased by .
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The use of a Smith chart is very similar to the use of a slide rule; many
tricks and short cuts are possible that are hard to describe but greatly
facilitate computations. The Emeloid Company, of Arlington, N. J.,
makes a chart of this kind, of celluloid, which is called the ‘‘ Radio Trans-
mission Line Calculator.”

Impedance charts of other varieties have been made and used, but
only one other is commonly encountered. In this version, B and X
are used as rectangular coordinates, and the lines of constant » and
d/\, are plotted. The chart has the same form when ¢ and B are used
as coordinates. The reflection coefficient cannot be read easily frcm the
diagram. The lines of constant r are a family of circles with centers on
the real axis, and the lines of constant d/)\, are circles centered on the
imaginary axis and orthogonal to the r-circles. An outstanding difficulty
with a chart of this type is that the points of infinite R and X are not
accessible. This rectangular form of impedance chart is illustrated in
Fig. 3-6.

3-7. The Impedance Concept in Waveguide Problems.—It has been
shown in preceding sections that the properties of both waveguides and
low-frequency transmission lines can be described in terms of incident
and reflected waves. The state of the line or waveguide can be expressed
by means of reflection coefficients that are, with the exception of a con-
stant factor, sufficient to specify this state completely. In addition, it
has been seen that the rule of combination of reflection coefficients is
complicated even in the simplest cases.

On the other hand, the state of a low-frequency transmission line may
be expressed equally well in terms of a relative impedance or admittance,
that is, the ratio of the impedance or admittance to the characteristic imped-
ance or admittance of the transmission line. The impedance or admit-
tance combines simply with other impedances, and it is this property
which leads to a demand for an equivalent concept for the characteristic
impedance of a waveguide. It has been seen that the reflection coef-
ficient in a waveguide can be replaced, at least formally, by a relative
impedance that is completely equivalent and that expresses the state of
the fields to within an unknown factor. In any configuration of wave-
guides of a single kind, relative impedances or admittances may be
defined in terms of r and ¢ and combined according to the usual low-
frequency rules. It is not necessary to specify exactly what is meant by
the characteristic impedance of the guide.

Let us now consider the junction of two waveguides as illustrated in
Fig. 3-7. If radiation is incident upon the junction from guide 1, there
will be, in general, a reflected wave in guide 1. This reflected wave may
be described in terms of the reflection coefficient or in terms of an equiva-
lent relative shunt admittance or series impedance that'terminates guide
1 at the junction. Provided the losses in the neighborhood of the junc-
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tion may be neglected, the power flowing in guide 2 must be equal to the
difference between the incident and reflected powers in guide 1. The
amount of reflected power will be determined by the actual electric and
magnetic fields in the aperture, which, of course, satisfy Maxwell’s
equations and the appropriate boundary conditions. In particular,
Guide 1 Guide2  2CTOSS any transversg plane, the tangential
- electric and magnetic fields must be con-
-~ T~ tinuous. To complete the analogy with
i low-frequency transmission lines, quanti-
ties analogous to the current and voltage
must be defined for waveguides, since it is
in terms of the values of current and voltage that the terminal conditions
must be specified. A few possibilities will be discussed.
The voltage and current should be linear in the magnetic and electric

fields, since it is desired that their product be a measure of the power.
Thus let

F1a. 3-7.—Junction of two wave-
guides.

V = aE; + bH:,
u.Ild

I = CE; + dHt,

where E, and H, are some mean values of the transverse fields. The
complex power is then

P = 4VI* = $(ac*EB* + be*H . E% + ad*EH*% + bd*|H.]?).

The Poynting theorem states, however, that P is proportional to E:H%
and independent of |E(? and |H\|2. Therefore

ac* = bd* = 0;
hence either
a=d=0, or b=c¢=090.

Now if it is required that the voltage be zero at a short circuit where
E, = 0 and that the current be zero at an open circuit where H; = 0,
then it is necessary that b = ¢ = 0, and therefore

V = ek, I = dH..

The impedance at any point is then

~l =]
I

s

(36)

SIS

and the power flow
P = }ad*E.H%. (37

It has already been shown that all properties of reflected waves can
be expressed in terms of a relative impedance, and no condition is imposed
on the proportionality factor of Eq. (36). The second condition [Eq.
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(37)] when applied to two guides such as indicated in Fig. 3-7 does repre-
sent, however, a new condition. Any mean value may be chosen for
E, and H,, and in fact different values may be taken for two different
waveguides, provided only that the conservation of power at a junction
between two guides in ensured. This condition cannot be written
explicitly, since it depends upon the nature of the junction. It can be
seen, however, that if the current is identified, for example, with the
transverse magnetic field at the center of the waveguide, then the con-
stant of proportionality between the voltage and the electric field is
definite and is determined so that P = $VI* represents the true power
flow. It may be pointed out that the ratio between I and H, need never
be specified and may be chosen at will. If particular values of E; and H,
are chosen, then only the product ad* is determined, but neither a nor d
separately.

The situation is somewhat analogous to that arising from the insertion
of ideal transformers in a network. if an ideal transformer were con-
nected to each voltmeter and ammeter in a network in such a manner
that the product of the readings remained the same, the result would be
an effective change in the definition of impedance, all the power relations
being conserved.

3.8. Equivalent T-network of a Length of Waveguide.—If the con-
cept of impedance in a waveguide is to be useful, it is important to deter-
mine whether or not it can be used in the same manner as the impedance
in low-frequency circuits. It has al-
ready been seen that the reflections
in a long line are correctly described
in terms of an equivalent shunt ad-
mittance or series impedance. Now
the question is whether or not more
complicated structures can be repre-
sented by equivalent circuits. If a straight piece of waveguide is ter-
minated in such a way that the reflection is deseribed by an impedance Z,
at the end of the line, then the equivalent impedance at the input terminals
of the line is

I16. 3:8.—Symmetrical T-network.

Zy + jZ, tan «l

Zin = Zo Zo + jZ; tan «l

(3.17)

Now to find a simple network equivalent, the symmetrical T-network
shown in Fig. 3-8 may be tried. This network has two parameters Z,
and Z, in terms of which the line parameters Z, and [ might be expressed.
For the network

ZZ,+ Z)

Zo = Ik T A
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or
Zy + 27,
I\ —— + Z
Z. = ' 7+ 7 * l.
N 1+ L
Zi+ Z,
By comparison with Eq. (3-17), the following identification can be made:
Z,+2Z,
Z] m = ]Zo tan Kl,
1 .tan Kl.

7+ Z. 77,

If these equations are solved for Z; and Z,, the result is, with some
trigonometric ‘ransiormations,

Z\ = jZ, tan K—2l;
Zz = "jZo cse «l. (38)

These values are independent of Z;. Hence this equivalent circuit is in
all respects similar to the waveguide, and it can be used with confidence.

For easy reference, Table 3-1 presents the values of the circuit param-
eters for lines of commonly used lengths. The parameters refer either to
the T-form or to the n-form of the network. The equivalence of these
forms is discussed in Chap. 4.

TaBLE 3:1.—NETWORK PARAMETERS oF LINEs oF VARIOUs LENGTHS

Series impedance of T-network | Shunt impedance of T-network
Length of line or shunt admittance of or series admittance of
r-network m-network

0 0 £

Ao /8 JV2 - 1) —i\V2

)‘0/4 7 _j
3%, /8 JV2 4+ 1) —i2

/2 ES P
5x,/8 ~JV2 4+ 1) iv2
3ng/4 ~J J
77 /8 -2 - 1) iv2

Mo 0 *

In a similar manner, it would be expected that any configuration of
metal in a waveguide would have some equivalent-circuit representation.
If this equivalent circuit is known, all the techniques known at low fre-
quencies can then be applied to investigate the behavior of the waveguide
configuration, both by itself and in combination with other configurations.
The equivalent. T-network that has been found for a straight length of
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waveguide has been shown to be equivalent only in a mathematical sense.
It has not been proved that the equivalence has any physical basis.
However, this physical basis will be established by arguments that are
given in Chap. 5. Chapter 4 will be devoted to a review of those ele-
ments of conventional circuit theory which will be most useful.

3.9. Transmission-line Equations for the H,,-mode.—It is possible
to express the field equations for a single mode of propagation in a wave-
guide in such a form that the correspondence to a transmission line is
made obvious. The dominant mode only will be considered, but the
extension to higher modes may be easily accomplished. The electric
field in a rectangular waveguide in the dominant H,-mode may be
written

E, = Asin ™ V(2),

where V(2) expresses the field variation along the line and may be called
the voltage. Likewise the transverse magnetic field is

H,= —A sin ‘%CI(Z),

where I(z) may be called the current. Then from Eq. (2-46) the longi-
tudinal field is

H.o= 47" cos ™2 V().
wua a

The relevant Maxwell equations are

9E,

E = JwﬂH zy
oH. oH., .
3z - '3;‘ = ]wGE,,.

If the values of the fields are substituted in the first equation to find the
voltage and current, the result is

‘ﬂgf) = —juul(2).

This is one equation for a transmission line, upon identification of
Jop = vZy, = Z.

The second Maxwell equation results in

al(z) . 1 (=Y’
- e 56T

which is the second transmission-line equation, where
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. 1 (»\* . .
]wé"‘ELE :’Y)():)'.

The propagation constant v of the transmission line has the same value
as that of the waveguide

= —olen + <I> )
/l

and the characteristic impedance is
0 =J— = Zu

The constant A may be chosen to obtain the correct power-transfer
relation if

/s,dxdy= —%/ EHE da :%VI*_
(6]

2
i
It is important to emphasize the arbitrariness in the choice of con-

stants. The value of A was chosen so that the complex power is §V/*

Y

Therefore

Z

I'1G. 3-9.— Dominant mode 1n rectangular waveguide.

The use of the same multiplying constants in the expressions for E, and
H . results in the characteristic impedance of the line being equal to the
wave impedance. Any other choice that preserved the power relation
would have been equally acceptable. A different value of the impedance
would have been obtained.
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The transmission-line equations can be derived in another manner.
Consider the waveguide in Fig. 3-9 operating in the dominant mode.
Let us choose for the voltage V(z) the integral of the electric field at the
center of the guide,

V() = ﬁ E, dy,

and for the line current a quantity proportional to the longitudinal cur-
rent flowing at the center of the broad face of the wavegnide. This
longitudinal current is equal to the maximum value of the transverse
magnetic field
1(z) = aH(2).

Let us consider the line integral of the electric field around the rectangular
path ABCD in Fig. 3-9. As the distances AB = CD become infini-
tesimal, the line integral approaches dV/dz. By Faraday’s law (the
curl E equation)

d_V _ jwub]_
dz =«

If likewise the limit of the line integral of H, is taken around the path
EFGH the result is

1dl [°

a
-= SinEdZ=waI—// sin’r—xdx——2K,,
adz fo a 0 a

b

where K, is the transverse current density across EF or GH. Its value is

Ki=H,=3_v;
wuab

dl . fwe w2
rZE (F N wp.azb) V.

The impedance and admittance per unit length of the transmission
line are therefore

hence

7 = Zdewb,

[44

. [ we &
Y—ﬂ%z‘mﬁ)

The propagation constant of the line is given by

2
¥t =ZY = —o%u + %’
and the characteristic impedance
72 Z 1 (wub)? 1 fwub 2
il T i ) &
wlpu — —

a?
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The choice of @ may now be made such that 3VI* is equal to the complex
power.

J. Schwinger has shown that it is possible to proceed in an entirely
general way and transform Maxwell’s equations directly into the trans-
mission-line equations whenever the boundary conditions are independ-
ent of the z-coordinate. Such a general case need not be considered here.
The procedure that will be uniformly adopted here is as follows:

1. The voltage V is chosen proportional to the transverse electric
field in the waveguide.

2. The current I is chosen proportional to the transverse magnetic
field.

3. The constants of proportionality are normalized in such a way that
3V I*is equal to the complex power flow.

Thus, it is assumed that

Ezy,2) = V(2)(z,y), (39)
Ht(l',y,Z) = I(Z)g(x;y), (40)

where f and g are real and so normalized that

/fXg~dS=1. (41)



CHAPTER 4
ELEMENTS OF NETWORK THEORY

By C. G. MONTGOMERY

4-1. Elementary Cousiderations.—In this chapter will be presented
some of the elementary results of network theory that are useful in the
study of microwave circuits. The approach will be in terms of what may
be called the low-frequency approximation to electromagnetic theory.
This approximation is the one usually employed in conventional circuit
theory, and the results are well known and available in many standard
textbooks. For the convenience of the reader and also to aid in a more
orderly presentation of the properties of high-frequency circuits, some of
the more useful material has been collected. This material is offered, in
general, without detailed proof of its correctness. Many of the results
are proved in Chap. 5 as special cases of more general theorems. In
other cases only the method of proof is outlined. The reader will find
himself already acquainted with a large part of this discussion.

In this chapter, the concept of an impedance element, or impedor, will
be considered as fundamental. An impedance element is a device that
has two accessible terminals. It may be a simple device, such as a piece
of poorly conducting material (a resistor), or it may be a very complicated
structure. It is required, however, that it be passive, that is, that no
energy is generated within the element. Charge may be transferred to
the element only by means of the terminals; and if a current flows into
one terminal, an equal current must flow out of the other. This is the
first portion of the low-frequency approximation mentioned above.
Thus a conducting sphere is not an impedor, since it has only a single
terminal, but the equivalent impedance element can be supposed to have
one terminal at the sphere and the other terminal at the point of zero
potential or ground, perhaps at infinity. In the region between the
terminals of the impedance element there exists an electric field. The
potential difference, or voltage, between the terminals is defined as
the line integral of the electric field from one terminal to the other. The
second portion of the low-frequency approximation under which network
theory is here treated requires that this line integral be independent of
the path between the two terminals. The difference in voltage, for any
two paths, will be proportional to the magnetic field integrated over the
area enclosed between the two paths and to the frequency, and can be
made as small as desired by the choice of a sufficiently low frequency.
The ratio of the voltage across the terminals to the current entering and

83
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leaving the terminals is the impedance Z of the element. The reciprocal
of the impedance is the admittance ¥ of the element. Only the cases
where Z is independent of ¥ or I will be considered, and for these tases
the impedance elerient is said to be linear. At low frequencies an imped-
ance element has a variation with frequency of the form

__d ;
Z = wC+R+‘7wL’ (1)

where R, L, and C are positive constant parameters. The real part of
the impedance, R, is called the resistive part, or resistance; the imaginary
part of Z, [wL — (1/wC)], is called the reactance. The parameters L
and C are the inducfance and the capacitance of the element. The
capacitance ' may be infinite, but in physical elements neither L nor R
is truly zero, although, of course, in many cases they may have negligible
values. The reactance is often denoted by the symbol X. At higher
frequencies, when the impedance elements of waveguide structures are-
considered, this simple form of frequency dependence is no longer valid.

In a similar manner, the admittance Y can be broken up into its real
and imaginary parts,

Y =@ + ]B ’

where @ is called the conductance and B the susceptance of the element.
An impedance element whose frequency dependence is given by Eq. (1)
is often broken up, for the convenience of the mathematical symbolism,
into two or three elements in series, one for the real and one for the imagi-
nary part, or one for each term with a characteristic frequency dependence.
Since the admittance is the ratio of the current to the voltage, if an
admittance is split into parts, the component admittances must be
combined in parallel. The currents through the separate elements then
add, and the voltages across them are equal. Thus if an inductance, a
resistance, and a capacitance are combined in parallel, the admittance
obtained is

I TP

The impedance of Eq. (1) has, on the other hand, an admittance made up
of the conductance

G = R _ R
R* 4 (wL — L)Z R+ X
wC
and the susceptance
1
R 4 <wL _ i>2 B+
wC

and the variation with w is characteristic of R, L, and C in series.
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Here is found the first illustration of the duality principle, which is of
great convenience in network theory. An impedance may be regarded
as the sum of several impedances in series, while an admittance is the sum
of other admittances in parallel. One quantity is said to be the ‘“dual”
of another if, in a statement or equation, the two quantities can be
interchanged without invalidation of that statement or equation. Thus
it is seen that

Impedance is the dual of admittance.
Series is the dual of parallel.
Voltage is the dual of current.
Resistance is the dual of conductance.
Reactance is the dual of susceptance.

The simple relation Z = V/I remains true if the quantities are all
replaced by their duals; that is, ¥ = I/V. Likewise the statement
“impedances are added in series’’ becomes ‘‘admittances are added in
parallel.” If the duality replacement is made in Egs. (2), they become

G
R=m g

s ®)
X=@wmip

The duality principle results entirely from the fundamental symmetries
of Maxwell’s equations. An equivalent formulation was discussed in
Sec. 2-10 under the name of Babi-
net’s principle.

Several impedance elements
and voltage sources may be con-~
nected together to form a net-
work such as the one shown in Fig.
4-1. A network is composed of
branches that may be individual
impedance elements, such as CE, or may consist of several impedance ele-
ments in series, as the branch AC, or in parallel, as CD. The branches
are connected together at branch points, or nodes. They form in this way
a collection of individual circuits or meshes such as CDEC or ACDFEBA.

If the impedances in the branches are known, it is possible to find the
currents in the network in terms of the sources of electromotive force or
applied voltages. The necessary relations are Kirchhoff’s laws. The
first law states that the algebraic sum of the voltage changes around any
circuit must be zero. This law may be regarded as an expression of the
law of conservation of energy for a charge that is carried completely
around the circuit. Explicit use is made here of the low-frequency
approximation that the line integral of the electric field is independent of

Fig. 4-1.—An arbitrary network.
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the path. Kirchoff’s second law states that the algebraic sum of the
currents flowing into each branch point must be zero. This law follows
from the conservation of charge, since charge cannot accumulate at the
branch point. A sufficient number of linear relations may be set up by
means of these two laws to make possible the determination of all currents.

A simpler set of equations is obtained if the currents in the meshes
are used as the unknown variables. These currents, which are indicated
in Fig. 4-1, are sometimes called the circulating currents. When circu-
lating currents are so chosen, Kirchhoff’s second law is automatically
satisfied. Thus there is a set of equations of the from

v = Zuh + Ziis+ Zisis + - - - + Z1m’[m,
ve = Zoty + Zagle + © o+ Zomte, (4)
Vm = Zmlil + Zm2i2 + e + meimy

where 71, 73, . . . , tm are the mesh currents and vy, vs, . . . , vn are the

applied voltages in each mesh. The coefficients Z;; are called the self-
impedances of the mesh, and a coefficient Z;; is the mutual impedance of
mesh 7 to mesh j. It is to be noticed that the directions of the currents
and the voltages in the meshes may be chosen in an arbitrary manner.
The convention usually adopted is that the relation between the voltage
and the current in any one mesh is such that the product #; represents
the power dissipated in the positive real part of Z; The signs of the
currents are, however, completely arbitrary. This entails a correspond-
ing arbitrariness in the sign of the mutual elements of the network. For
certain cases uniform conventions will be adopted for the positive diree-
tion of the currents. It should be emphasized that although the signs of
the coefficients of the currents are indefinite, the network itself is not,
and the results of the calculations are independent of the choice of the
yositive directions of the currents. The number of equations is, of
sourse, equal to the number of independent meshes, m, and can be deter-
wined from the relation

m+n=>b+1, (5)

shere n is the number of nodes and b the number of branches in the net-
work. This relation can be easily proved by a process of mathematical
induction. It is observed that this relation is valid regardless of how the
number of branches is chosen. Thus, in Fig. 4-1, EBAC may be called
one branch ending in the nodes E and C or two branches EBA and AC
with nodes at E, A, and C.

Suppose that there are two sets of applied voltages vi® and v{?. These
voltages may be of the same frequency or of different frequencies. Let
7™ and 7 be the corresponding sets of currents. Then, since Eqs. (4)
are linear, the currents #{ + 7 are the mesh currents when the applied
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voltages are v{ + »{?. This is known as the superposition theorem for
linear networks.

The fundamental set of network equations may be established on a
node basis rather than on a loop basis as are Egs. (4). The independent
variables are the voltages of the nodes, and the dependent variables the
currents flowing in and out of the nodes. The equations thus obtained,

= Y1 + Y 4+ - ¢+ + YVimom,

(6)

tm = Ymitn + s 4 Ymml)m,

are the duals of Egs. (4). The coefficients Yi: are the self-admittances
of the network, and Y;; are the mutual admittances.

4-2. The Use of Matrices in Network Theory.—Many of the results
of network theory, both in the low- and high-frequency approximations,
can be written most conveniently and concisely by the use of matrix
notation. For the convenience of the reader, a summary of the rules of
matrix manipulation is presented in this section. Egs. (4) are written as

v =Zi (7)

where Z is the impedance matrix of the system. It is a square array of
the coefficients of Eqgs. (4),

Zy Ziw Zyu ... Zmn
Z21 Zgz . .. ng
Zm1 Zmz * [N me

The quantities v and i are also matrices consisting of one column only and
are more often called ‘““column vectors.” They are

V1 11

Ve ’1:2
v = y f =

va tm

All matrices are distinguished by the characteristic sans serif type used
above; their components are printed in the usual italic type, since they
are ordinary scalar quantities.

The operation of combining Z and i is ealled multiplication. 1t is
defined by the following equation which holds for the multiplication of
any two matrices provided the number of columns of the first matrix is
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equal to the number of rows of the second matrix.
m

A= BC, 4‘1.',' = z BiﬂC,,,'. (8)
n=1
It should be noted that CB > BC, in general. When the product is
independent of the order of multiplication, the matrices are said to
commute. Matrices are equal only if each element of one is equal to
the corresponding element of the other. It is apparent that Eq. (7) is
the same as Eqs. (4) when the above rules are applied.

Addition, too, may be defined for matrices. The sum of two matrices
is the matrix whose elements are the sums of the elements of the two
matrices; thus

A=B+C,

A.','_= Bif + C;‘,‘.

It is possible also to define a zero matrix O whose elements are all zero,
and the equation

A-B=0
means that

A.‘,‘ = Bij, for all 7 and ]

Multiplication of a matrix by a scalar is therefore also defined as

A = (cAs) = Ac.

Likewise, the unit matrix | may be defined, whose elements along the
diagonal running from the upper left-hand corner to. the lower right-
hand corner are unity and whose other elements are zero,

100 ---0
01
0 01
=1 . , or L = &;,
0 . . . e 1

where 8;; is the Kronecker delta. For any matrix
Al = 1A = A.

A matrix that has elements only along the diagonal is called a diagonal
matrix. Two diagonal matrices always commute with each other.

If Eqs. (4) are solved for the 71, 45, . . . , ¢m in terms of vy, vy, . . .
vm, the resulting equations can be written as a matrix equation

i =Yy,
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where Y is the admittance matrix. If this equation is multiplied by Z,

2i = ZYv = v.
Thus Y is the reciprocal of Z and can be written Y = Z-!, The solutions
of Egs. (4) for ¢; in terms of vy, v5, . . . , v can be written by Cramer’s

rule as

i = Jot (Z) @12 4 0. Z% - - - puZm),

where det (Z) is the determinant formed from the elements of Z and Z¥ is
the cofactor of the element Z;; in det (Z). Therefore it is evident that
the reciprocal of a matrix can be defined as

1 __ (Zii)
= Jet () )

The matrix (Z%) is formed by arranging the cofactors of the elements
Z;; in a matrix array and then interchanging the rows and columns.
This operation is called transposition and is described by the equation

Z=(Zy», it Z=(Z.
Reciprocal matrices have the property

AA-L = AIA = |,
Furthermore, if

AB = C,
then
C-1 = B1A-L,
Also B
¢ = BA.

A column vector is also subject to the operation of transposition and
the resulting matrix is a row vector. Thus,

i = ) = (iy, 4o 23, + * *).

The product of a column vector and a row vector, taken in that order, is a
square matrix

o
o
It

A,
where

A.']' = a,-_b,-.
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If the product is taken in the reverse order, the result is a scalar

b =¢ = 2 a;b;.

J

4.3. Fundamental Network Theorems.—The fundamental physical
principles that form the basis of network theory are embodied in Max-
well’s equations for the electromagnetic field. These equations, together
with the foree equation, the appropriate boundary conditions, and Ohm’s
law, would be sufficient for all further developments. Network theory is,
however, limited to some rather special cases of all those to which the
general electromagnetic equations may be applied. It would thus be
possible to formulate network theory from several specialized and
rather simple theorems or postulates which, in turn, are derivable from
the general equations. It will not be attempted here to erect this logical
structure, because the problems considered in waveguide networks are
more general than those treated by ordinary network theory. The dis-
cussion will be confined to a mere statement of the network theorems
without a rigorous justification for them. The more general point of
view will be adopted in Chap. 5. The choice of theorems that are to be
regarded as the primary ones, from which all the others can be derived,
and those which are corollaries to the primary theorems is, of course, to
some extent arbitrary.

The first network theorem, the superposition theorem, was stated in
the first section of this chapter. This theorem follows directly from the
linearity of Maxwell’s equations. The second important theorem is
called the reciprocity theorem. This theorem is most concisely expressed
by the statement that the impedance matrix of a network is symmetrical;
the element Z;; is equal to the element Z;. This theorem follows from
the symmetry of Maxwell’s equations and will be proved in Chap. 5.
Since Y = Z71, it follows that Y is also a symmetric matrix and Y;; = Y.
The reciprocity theorem is often expressed by the rather ambiguous
statement that it is possible to interchange the position of a generator
and an ammeter without changing the ammeter reading. An inspection
of Egs. (4) will convince the reader that the statement is vague but
correct.

The third important network theorem is called Thévenin’s theorem.
This theorem states that a network having two accessible terminals and
containing sources of electromotive force may be replaced by an electro-
motive force in series with an impedance. The magnitude of this electro-
motive force is that which would exist across the two terminals if they
were open-circuited, and the impedance is that presented between the
two terminals when all the voltage sources within the network are
replaced by their internal impedances. This equivalence is illustrated in
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Fig. 42. Let V be the open-circuit voltage of the network and Z the
impedance looking back into the network when the internal electromotive
forces are zero. Let Z: be the load impedance placed across the network
terminals. Then Thévenin's theorem states that the two networks shown
in Fig. 4-2 are equivalent. To make this evident, let us imagine that a
source of voltage —V is placed in series with the load Z,. No current
will then flow in Z,. Now, invoking the superposition theorem, this zero
current may be considered as composed of two equal and opposite cur-
3

TR A,

Fia. 4-2—Equivalent networks demon- Fic. 4-3.—Circuit to illustrate Thévenin’s
strating Thévenin’s theorem. theorem.

Il Zl 23

rents, one excited by the external source and the other by the source
within the network. However, the value of the former current is
—V/(Z + Z.); therefore, the current through Z. from the sources within
the network is V/(Z + Z.), which proves the equivalence.

As an example of the application of this theorem, let us consider the
circuit shown in Fig. 4-3. The impedance Z looking to the left of AB
when V' is short-circuited is

Z1Z,
Z =17
Yz, +7
The open-circuit voltage at AB is
Zs
V=-V,"
"Zi+ Z,
Hence
Z,y
o Vot zm viZe
Z3+Z sz + 7, ZiZo+ Z3Zs+ Z\Zs+ Z(Z1 + Z>)

Thévenin’s theorem is one of a class of similar relations, each of which
is particularly useful in certain applications. Let us consider, for
example, a network with two pairs of accessible terminals with the volt-
ages and currents as indicated in Fig. 4-4. The output voltage is

Vz = ZIZII + Z22I2,
but

-
Zl,_ ]2’
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and hence
- ZI2II .
Zw+ Zyg

An equivalent output circuit is, therefore, that shown in Fig. 4-5a. In a
similar manner, it is found from the admittance equation that

_ V12V .
Yoo+ Y’

therefore, an equtvalent circuit can be drawn as in Fig. 4-5b.

Another theorem that is useful in the study of the behavior of net-
works is the compensation theorem. If a network is modified by making
a change AZ in the impedance of one of its branches, the change in the
current at any point is equal to the current that would be produced by
an electromotive force in series with the modified branch of —7AZ, where
1 is the current in the branch. This is immediately evident from the
superposition theorem, since, if the network is altered by both changing

the impedance and inserting a series

Iz=

V2=

A, [io electromotive force —7AZ, no alter-
o— —1—° ation is caused in any of the net-

v, T TVz z, g work curre.nts. Consequently the
o—— S two alterations have equal and op-

posite effects. This is a statement
of the compensation theorem. It
is necessary, however, to consider the special case for which AZ is infinite,
that is, when the branch is open-circuited. Let the impedance in the Kth
branch be Zx and the current through it Ix. Now let us suppose that
Z g becomes infinite.

Fia. 4-4.—Two-terminal-pair network.

V==Z20 Z, I=-Y, (Y Y22 Y, =~L/V,=1/Z,

(@) ' ®)
F1a. 4:5.—Output circuits equivalent to circuit of Fig. 4-4.

Let Z' be the input impedance of the network at the terminals of

Zx. Then by Thévenin’s theorem,
'VI

T Zc+ 2
where V' is the voltage across the terminals of Zx when Zr becomes
infinite. If an electromotive force equal to — V' is introduced, the branch
may be open-circuited without disturbing the currents in the remainder
of the network. Hence the change in the network currents caused by

Ig



Sec. 4-3] FUNDAMENTAL NETWORK THEOREMS 93

opening a branch is equal to the currents that would be produced by the
electromotive force

—V' = —Ix(Zx + Z")
acting in series with Zx.

The several theorems that have been considered are based on the
elementary properties of Maxwell’s equations. The reciprocity theorem,
for example, depends essentially on the symmetry of the electromagnetic
equations. On the other hand, the compensation theorem depends on
the linearity of the equations. Other fundamental properties of net-
works, or network theorems, are based fundamentally on the physical
principles of energy flow and energy dissipation. If the force equation
for the electron is to be regarded as fundamental, these properties can
be regarded as derived from that. If a current 7 flows into the terminals
of an impedance Z, across the terminals of which there exists a voltage
V, then the complex power associated with the impedance is given by
P = 3V7* where the asterisk denotes the complex conjugate. The real
part of the complex power is the energy dissipated per second in the
impedance; the imaginary part is the difference between the stored
magnetic and the stored electric energy. Thus, if Z is purely real,

%
P=1v Y-z
is purely real and no energy is stored. If Z is purely imaginary, the real
part of P is zero and no energy is dissipated. The factor § in the expres-
sion for complex power comes from the fact that the amplitudes of the
currents and voltage are used; that is, the peak values are employed
rather than the root-mean-square, rms, values. If the rms values were
used, the factor 3 would be absent.

As an example, let us consider a simple circuit consisting of a resist-
ance, an inductance, and a capacitance in series with a generator. The
impedance Z is

and

Rationalized, this becomes
Vi ol — 1
1 1VI2R . wC

Ly il
R?‘-}—(a)L—R‘) If‘+<w/1—gﬁ>

P =
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The real part is recognized as the energy dissipated in the resistance.
The energy stored in the inductance is, from elementary considerations,

Wy = 3L}i|%,

and the electric energy stored in the capacitance is, similarly,

where V¢ 1s the voltage across the capacitance.

We = 3C]Vel%,

By use of the relation

some algebraic manipulation will show that

—=J

Ve _ o€

vz
_L{VPR | .
P—QTZF +_7(IVL"M c).

The theorem on complex power is quite analogous to the complex

Poynting energy theorem which was derived in Chap. 2.

Zg

S,

{a)

1. 4-6.-—Circuits
for power-transfer re-
lationships.

generator of zero impedance.
the load Z, attached is thus simply shown in Ifig. 4-6a.

This is an
extremely important point, and in Chap. 5 attention
will be devoted toits elaboration in the more general
form suitable for application to waveguide circuits
as well as to the low-frequency approximation con-
sidered here. As might be expected, there is a the-
orem, analagous to Poynting’s energy theorem for
real fields, in terms of currents and voltages in which
the sum of the stored electric and magnetic energies
enters. A discussion of this theorem will be found
in Chap. 5.

It is now desired to state the relations for the
maximum power transfer from a generator to a load.
From Thévenin’s theorem it is clear that the gen-
erator, however complex its nature, may be repre-
sented by an impedance Z, in series with an ideal
The equivalent circuit of the generator with
The power

absorbed in the Joad is

P

P =3 Re (Z)[i*

i RV

i
5 fir Z, 720> 2R, ¥R ¥ (X, + X2

It is easy to see that if the load impedance is varied, the conditions for P
to be a maximum are that

If/, = Rg
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and
XL = —Xg.
This maximum value is
1 V2
Pmnx - g R_L'

It should be noted that here again the factor # would become % if the rms
value of V were used. The factor would, of course, be § in the d-c case
also.

For current generators, the dual relation is in terms of admittances.
The circuit becomes that of Fig. 4-6b. For this case,

P =3 Re (Y)[V],

172
Prax = SG,
where
GL = Gp, BL = - Bﬂ.

When the conditions for maximum power transfer are satisfied, the load
impedance is said to be the conjugate image impedance. The quantity
Pr. is often called the “available 2,

power”’ of the generator. - o]

If the load impedance does not v Matching z,

satisfy the conditions for maximum :[[ network ?
power transfer, a matching network - -
is often inserted between the gen- A B
erator and the load, as shown in Fre. 47.—Matehing network.
Fig. 4-7. 1If the network is lossless, the condition for maximum power
transfer may be applied, with the same result, at either 4 or B or indeed
at some point at the interior of the matching network. If the network
is lossy, the two conditions are different, and the proper procedure
depends upon considerations of design.

4-4. The Synthesis Problem and Networks with One Terminal Pair.—
The problem of finding the properties of a network when its structure and
the behavior of its component inductances, condensers, and resistors are
known has been considered. The problem inverse to this, and more
often encountered in practice, is that of constructing a network having
certain specified properties. It will be seen that there are severe limita-
tions on the possible behavior of networks; these limitations are funda-
mental to network design.  Networks have been considered as composed
of a number of branches forming complete circuits and containing sources
of electromotive force and resistors in which power is dissipated. In
general, the purpose of a network is to transfer power from a generator
to one or more impedances which absorb the power. It is convenient
then to remove the generators and the loads from the network and to
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consider the properties of the network with a number of accessible ter-
minals separate from any loads and generators that may be connected
to the terminals. Networks may thus be classified according to the
number of accessible terminals. In the simplest case, there are only two
accessible terminals, and the network is described by a single quantity
Z,;, the self-impedance, or more simply, the impedance. It must be
remembered, however, that Z,, is in general complex and, so far, there are
no restrictions on the frequency dependence of the real and imaginary
parts. Because the problem is still restricted to passive networks,
Re(Z::) must be greater than or equal to zero. Power is therefore
transferred from a generator connected to the terminals only if Z;; has a
real component.

e ®

Fig. 4-8.—Network having three accessible terminals.

For networks having more than two accessible terminals, only the
transfer of power from a generator connected to one pair of terminals to
various loads connected to other terminal pairs is usually of interest.
The potential difference between one terminal that is connected to the
generator and another that is connected to the load is of no importance.
Thus a network with three accessible terminals may be regarded as a
two-terminal-pair network, one of the terminals being common to the
input and output circuits, as indicated in Fig. 4-8.

Whether or not the two lower terminals shown in the right-hand figure
are connected is usually immaterial. Thus a network with n accessible
terminals may be regarded as possessing n — 1 terminal pairs. The
general network equations [Eqs. (4)] may thus be reinterpreted as express-
ing the linear relations between the currents that flow in and out of each
terminal pair and the voltages across the pairs of terminals. The order
of the impedance or admittance matrix is thus an index of the complexity
of the network under consideration. Networks with one, two, and more
terminal pairs will be treated in succession.

The problem is essentially one of synthesis. Given a junction that
has N pairs of terminals, the contents of the junction being specified by
the elements of the admittance or impedance matrix, it is required to find
the possible meshes inside the junctions and the values of the individual
elements in the meshes. The problem can be solved in two stages hav-
ing different degrees of complexity. First, ways must be found to con-
nect individual elements and the impedances of these elements so that the
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impedance matrix has the proper value at a given frequency. It is
relatively easy to do this. Second, the meshes and the elements must be
chosen in such a way that the frequency dependence of the impedance
matrix is reproduced. The frequency dependence of the elements is
usually chosen to be that specified in Eq. (1), since at low frequencies
such elements are easily obtainable with ordinary coils and condensers.
Such networks are certainly physically realizable. At the higher fre-
quencies, where guided waves are the primary concern, it is not at all
certain whether it is advisable or even possible to form equivalent circuits
of individual elements whose frequency dependence is given by Eq. (1).
In general, therefore, the discussion will be limited to a consideration of
the first part of the synthesis problem, namely, that of finding the meshes
and the elements at a single frequency. Some important things may,
however, be said about the possible dependence on frequency of the
equivalent circuits for guided waves.

Let us consider the simplest case of a network with only one terminal
pair. As has been already stated, one equivalent network for a first-
order impedance matrix is a single impedance having the specified value
at the given frequency. However, there may also be several impedances
in series or in parallel that together have the required impedance. Thus
it is obvious that there is not a unique solution to the problem. An
attempt must be made, then, to find the simplest and most convenient
solutions. The simplest solution, in this case, is obviously a single
impedance element. A more complicated solution is necessary if it is
desired to proceed to the second stage in the synthesis problem. If the
network must have a complicated frequency dependence, then its com-
position out of simple elements will be correspondingly complicated.
Indeed, it may be that there exists no network, however complicated,
composed of simple elements such as R, wL, —1/wC, which will give the
frequency dependence that is desired. Only certain variations with
frequency can be obtained with physically realizable elements. A dis-
cussion of this question resolves itself into two parts, and it is convenient
to treat first the case where the impedance Z; is purely imaginary.

The restriction on the variation with frequency for this case is known
as Foster’s theorem, and this theorem may well be classed with the other
network theorems which have been called fundamental. Foster’s
theorem states that the impedance, or admittance, of a lossless network
with two accessible terminals must always increase with increasing fre-
quency. This is obviously true for the simple element given in Eq. (1).
It is also true, as is shown in Chap. 5, for the general case of guided waves.
A simple proof for the low-frequency case! will be presented here. If

VA, V. Starr, Electric Circuits and Wave Filters, 2d cd., Pitman, London, 1944,
Appendix X, p. 463.
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the value of the impedance Z, in Fig. 4-9a is changed by an amount AZ,,
new currents will flow in the network. By the compensation theorem,
these new currents will be equal to those which would be caused by the
generator shown in the equivalent circuit of Fig. 4-95. The original
admittance of the network was Y = I/V, and the electromotive force V'

[
== I, —
|4 v
Zy

(@) ®

Fia. 4-9.—Equivalent circuit demonstrating Foster’s theorem.

produced a current I in the branch . Hence, by the reciprocity theorem,
an electromotive force of —I,AZ, in the branch r will produce an input
current of

e

—1,AZ,
Vv

The change in the admittance 1s therefore

. _ Nz,

r

If the network is purely reactive, I, will be of the form je.V, where
a.isreal, and AZ, must be jk,Aw, where k, is real and positive. Hence

AY
Aw 2 joiks.

r

Since this is greater than zero, the theorem is proved. At zero frequency,
the network must be either a pure inductance or a capacitance, and the
admittance must therefore be either

O—fb'b’b'\—{ ____o teroor minusinfinity. Since the ad-
mittance must increase with fre-

quency, it will increase to infinity,

______ 2 o—d— —]
Lossless
network R
O —

¥Fig. 4-10.—Foster representations for a  I1¢. 4-11.— General lossy two-terminal
lossless impedance element. network.

then change to minus infinity, and increase through zero to plus infinity

again, repeating the process perhaps many times. From the duality

principle it is clear that this must be true also for the impedance. This

dual relationship is illustrated by the two possible equivalent circuits
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shown in Fig. 4-10. It should be emphasized that by means of networks
of this form, the most general frequency dependence that is possible with
elements in the simple form of inductances and condensers can be
realized.

If the network contains resistances, the above statements are no longer
true. Darlington! has shown that the most general lossy two-terminal
network can be represented by the circuit shown in Fig. 4-11. Here
the resistance R is independent of frequency, and the four-terminal
network contains no lossy elements. For.a further discussion of this
important and interesting aspect of circuit theory the reader is referred
to Vol. 9, Chap. 9.

4-6. The Circuit Parameters of Two-terminal-pair Networks.—
Perhaps the most important type of network for microwave applica-
tions is that for which the impedance matrix is of the second order.
The network has two pairs of terminals, and three independent param-
eters are necessary to describe its properties. The importance of such
networks lies chiefly in the fact that they are readily connected in cascade
or with lengths of transmission lines to form a transmission system. The
whole assembly can then be reduced to an equivalent linear device
represented, again, by three parameters. A common name for a two-
terminal-pair network is ‘“transducer.” The impedance matrix isof the
form

Zu Zy
Z= . (10)

ZlZ Z22
The simplest equivalent circuit for this is the familiar T-network shown
in Fig. 4'12. The positive directions of the currents and voltages that

Zy =2y, Zpa~2y,
A - (13 NN AVAAY: 423 —~1,
t ) 3 A
o - ———0

—
N

F1s. 4-12.—T-network.

will be adopted are indicated on the figure. It should be noticed that if
the currents and voltages have positive values, power is flowing into the
network at both pairs of terminals. The values of the impedances
shown on the figure are easily derived. For example, consider the mesh
starting at terminals (1) and indicated by the arrow in Fig. 4-12. TIf

the voltage drops around this mesh are added, it is found that
Vl == (Z11 —Z12)11+Z1211+Z1212; (11)
! Sidney Darlington, ‘Synthesis of Reactance 4-Poles,” J. Math. Phys., 18, (1939).
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and V, may be found in a similar fashion. The current in the first mesh
flows through the impedance Z; in the same direction as the current in
the second mesh. Thus if the shunt impedance in the network is posi-
tive, the mutual impedance element in the matrix is also positive. This
is the most cogent reason for the choice that has been made of the positive
directions of the current. The choice of the positive directions will be
made, whenever possible, so that if power is flowing into all terminals of a
complicated network, all the impedance or admittance matrix elements
are positive definite if the cor-
responding network elements are
also positive definite.

The admittance representation
that is the dual of the T-network
Fi1g. 4:13.—TI-network—dual representation is the II-network shown in Flg

of T-network. 4-13. It will be noticed that the
direction of I, and also the direction of V; have been reversed in this
case. In this way the requirements for positive matrix elements are
satisfied. It is easy to verify the fact that the correct values have been
assigned to the circuit elements by considering the currents flowing in and
out of the node at the upper terminal (1). Thus

Il = (Y11 - Y12)V1 + Y12(V1 + VZ)y (12)

and a similar expression exists for I,.
It is possible also to find the admittance matrix corresponding to the
T-network by the relation

Y =2 (13)

The elements of Y may be easily found from the definition of a reciprocal
matrix given in Sec. 4-2,

VA
Y11 = T;z’
Z
Yi,= — T;E, (14)
Yzz = Z_l)l'ly
where
D = Z11Z22 - Z%g (15)

It will be noticed from the second of Eqs. (14) that if Z,, is positive, Y,
is negative. This arises because the positive direction of the currents
shown by the network of Fig. 4-12 would not be correct for an admittance
representation. In asimilar way, it is possible to write
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Y
Zu == "AB)
_ Yiz
Zo=-3 (16)
Zzz = %J

Moreover,
Da = 1. a7

These relations will be found useful in many ways.

A most important relation is the one giving the value of the input
impedance of the network when the network is terminated by an arbi-
trary load Z;. The second relation between the voltages and currents is
given by

Vo= Zioli + Z32s, (18)
and it is required that
Ve
7= Zr (19)
or
_ Zys
I, = 7o+ 7. 1. (20)
Hence the input impedance is given by
Vi, Zh
Zi = T, = Zy Tt 7, (21)
By the duality principle, therefore, Li-M Ly,-M
o S T
Ye=Tu-y 7V, (22) M
It should be noticed that the value of the input
impedance (or admittance) is independent of the Fig. 4-14.—T-net-

directions of the currents; this is guaranteed by the jrons = Sdwvaient, of
fact that it depends on Z3, (or Y3,).

The parameter that is sometimes used to express the degree of cou-
pling between the circuit connected to terminals (1) and that connected
to terminals (2) is the coefficient of coupling 4 which is defined by

Zy,
-\/Z 1 1Z22
This parameter is most commonly used in connection with loosely coupled

coils. The equivalent circuit of this device in the T-network representa-
tion is shown in Fig. 4:-14. The value for & in this case is

k

;/ —
(bc“,_/ -

E.G. & G.LIPRARY e
LAS VEGAS BRANCH |
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P M
VL,

The parameter k thus has some value between. zero and unity.

For many cases, the most useful circuit parameters are the input
impedances of the network when the output end is open- or short-cir-
cuited. The impedance locking into terminals (1) when terminals (2)
are short-circuited will be denoted by Z{’; correspondingly, when ter-
minals (2) are open-circuited, the input impedance is Z?. The super-
seript (2) will be used to denote the corresponding quantities for terminals
(2). From Eq. (21) it is clear that

(24)

Zy = Zn,
72
1) — _ Z12,
¥ =27y 70
ZR = Zn, (25)
72
2% = Zn — Z=
n= 7
Also
1 D
—_ = —— = Z, 3
Y. = 7, = e (26)
Then from Eq. (14) it is noted that
Yuz, = Y2.Zss. (27)

In terms of the short- and open-circuit parameters, this relation becomes

zy _ 72

7y~ 2y 28)
and by the duality principle

Yo Y@

Y~ v (29)
totm — 2 A good example of the usefulness of
Y Lossless v these relations is afforded by the fol-
in tfansif,“iess‘“ L lowing. It is easy to calculate the ex-
to—] e o] 2 pression for the transformation of an

) admittance that occurs when a length
F1g. 4-15.—Transformation of an . .. . . .
admistance by adding length of trans- Of transmission line is added toit. Let
mission line. terminals (2) be chosen as indicated in
Fig. 4-15. Application of Eq. (29) to the combination of the admittances
of the line and of the shunt element results in

Yia _ JYetanhz + ¥,
—jV,cothe = —jY¥,cothr + Y.

30
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which can be reduced to the usual form

YL + on tanh X

Ya = Yo g + 7Y tanh z

(31)

Other useful parameters are the coefficients in the set of linear equa-
tions that relate the input current and voltage to the output current
and voltage. They are given by

V1 = G/Vg - (BIz,

(32)
I, =¢eV, — Dl,.
The parameters are related to the impedance matrix elements by

Q= Z—n’ ® = 2:
Zyy Z12

(33)
e = L, D = ZlQ.
Z12 Z12

There must be a relation that corresponds to Eq. (28) and that also
expresses the reciprocity condition. This has the form

c ®
= 1. (34)

C D

I, -1,
the determinate of the matrix. If Eq. (32) is solved for V. and I,
it can be written, in matrix form, as

[I;] B [2 ﬁ][-vz] (35)

The elements of the matrix are the same as those of Eqgs. (32), but in a
different order, and the determinant of the matrix of Eq. (35) is equal to
unity. This set of parameters has been in use for a long time, particu-
larly for applications involving power transmission lines. From Eqgs.
(33) it is immediately-evident that if the network is lossless and the
Z’s are all pure imaginary, the elements @ and D are pure real and ®
and € are pure imaginary. If the network is symmetrical, Z;, = Z,,
and @ = D.

The utility of this set of parameters becomes more obvious when
networks connected in cascade are to be considered. This situation
will be treated in more detail in the following section. An important
example of the use of these parameters is afforded by the case of the
ideal transformer. The matrix of a transformer takes the form

If [Vl] and ( Ve ] are chosen as the column vectors, then Eq. (34) is
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1
a9, (36)
0 n

where n is the turn ratio of the transformer, the direction of voltage stepup
being from terminals (1) to terminals (2). No impedance or admittance
matrix exists for the ideal transformer. The elements all become
infinitely large, and therefore the series impedances of the equivalent
T-network are indeterminate.

Three important sets of parameters and their duals have just been
presented which may be used to specify completely the properties of a
general, passive, linear network with two pairs of terminals. The set
that is most convenient to use depends on the particular application in
question.

4-6. Equivalent Circuits of Two-terminal-pair Networks.—Another
method of describing the behavior of a network is by means of an equiva-
lent circuit. It has been shown that three parameters are necessary
for the complete specification of a network with two pairs of terminals.
The equivalent circuit must therefore contain at least three circuit
elements. There is, of course, no unique equivalent circuit but an
infinite number of them. Moreover, they may contain more than three
circuit elements. Two examples have already been given—the familiar
T- and II-representations. For microwave applications other representa-
tions are also useful. Portions of a transmission line have been intro-
duced as circuit elements. In Chap. 3, lines of this type were discussed,
and the II- and T-equivalents for such lines were given there. These
lines will now be considered as convenient circuit elements, and the
electrical length and characteristic impedance to define their properties
will be specified. Although this could be done for the general case of
lossy transmission lines, the discussion will be confined to the case where
the lines are lossless, since these are by far the most important cases for
microwave applications.

A simple case of such equivalent circuits is demonstrated by the cir-
cuits shown in Fig. 4-16. These circuits consist of transmission lines,
one shunted by an arbitrary admittance and the other having an arbi-
trary impedance in-series. The three parameters are thus the value of
this admittance Y, the length of the line [, and its characteristic admit-
tance Y, The line with the series impedance might be termed the dual
representation. These two circuits are duals of each other in the sense
that the relation between Y and the elements of the admittance matrix
corresponding to one circuit is identical with the relation between Z
and the impedance matrix elements that describe the other circuit. Not
all of the important circuits of this type will be discussed in detail, but
several are shown in Figs. 4-16 to 4-23. The relations between the cir-
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! z [4
o— I ———\/\/\——0
y
Zo YO
o— N O————————O
(@) ®
Fig. 4-16.
Zy = —jZ, cot g, Z =2y — Zy,
Zoy = 4 — jZ, cot @i, Bl = cos! g‘“,
12
Z]z = i]Zo cse Bl, ZO = jZ12 \/1 - <_§__11>2
12
! Z [4 Z,

Fra. 4-17.

Yu=Y1—jcot g, Y

—-

. 1
=Yu +]\/1+W2’

. . 1
Yo=Y, —jcot g, Y2=Y22+]\/1+W)
12

-+

Y2 = *3cscfl, Bl

)
12 »

Z,

escH(FjY ) = sin“(

h<

N
~
[}

b

Fic. 4-18.
Yu= Yl, Y, = Yu,
Yzz Yz, Y-z = Y22,
Y|2 jyn, Yo= —jYw.

It
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cuit elements and the impedance, or admittance, matrix elements are
given in the legends. Each set of equations given in the figure legend
refers to the (a) circuit, which is shown on the left of each figure; the

Zy=1 Zy=1

(2]
Fig. 4-19.
Vi = .1 — cot B, cot Bl — jY cot 8,
n=J cot Bl + cot Bl; + ;Y !
.1 — cot gl cot Bl — jY cot Bl

Yo cot gl + cot-gl; + jY ’
Yoo = 7 cse Bl cse Bl» )
¥ cot Bl + cot Bl; + 5Y
Symmetrical Case Only
1
Y + 2(Y1 + Y,

= Y[l — (Y + Vi)Y
Bl = cot™! (—jY 11 — jY12).

{

o— IO —°
Zy
l:n
Fra. 4-20.
Zy = —Jj Zy cot B, Bl = cos™} izuﬂ’
Zs
3 7 7
Zn = —jnZocot B,  Zo= —jZuyjz 5 — 1,

D _ [Za
Zys = jnZ, csc B, "= A7
Zn

circuit (b), on the right, is the dual circuit. Thus in the legend of Fig.
4-17 the relation
Yu = Y1 b ] cot ﬁl

is given. The corresponding equation for the dual circuit is
le = Zl - j cot Bl,

which is seen to be identical in form with the equation for Y. In a
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similar way,
Z1y = j cse B, 37
Zzg = Zz - ] cot ﬂl

These circuits are of importance for microwave applications princi-
pally because they can be reduced to very simple circuits by adding
portions of transmission lines. This corresponds to shifting the planes

I l2

l:n.
Fia. 4-21.
Zy; = j tan [8l, + tan! (n? tan Bly)],

Zzg = ] tan [6l2 + tan—! (tan BII)jI!

n2
n? tan @I, tan Bl, — 1
— 72 =
2 — I tan 8l; tan Bl; — nt

14t —a e Qs —
tan Bl = —n & i\/[ 30 — a) ]+1’

b+ca 1+ aa

tan fl, = —at+a c¢c—ab’
n? — —ca—b_ a-a
T 1+ aa c—ab
a = —qu,
b = Z11Z22 - Z%z,
Cc = —jZQQ,
a = tan Bl;.
1 A
v
Zo=1
1:n
@
Fia. 4-22.
Z11 = "‘jCOt Bl, Bl = cot™! jle,
. Zy,
Zy = Z — jn? cot B, n= ————
* 7 eot s V1+ 75
ZuZ3,

Zy = jn Veot? gl — 1, Z =7y — .
12 J \/ 22 1+Z%1
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of reference in a waveguide circuit to those points which are most con-
venient for the purpose at hand. Thus in Fig. 4-21, if an additional line
length is added to each end, so that the total length of each of the trans-
mission lines connected to the transformer is an integral multiple of a
half wavelength, then the transmission lines may be omitted entirely
and the circuit reduces to that of an ideal transformer alone. The
circuits shown in Fig. 4-18 may be useful in finding the arrangement of
waveguide or coaxial line necessary to reproduce a given T-network
representation. The impedance of a coaxial line can be easily adjusted,
and the shunt susceptance may be introduced by diaphragms. This

z, Y
—AVV o o— ANN——0
Z, Y, é%
o -—20 O —0
l:in l:n
(@) ®)
F1a. 4-23.
2
Z11=Z1+Z—.,2! ZI=Z11—£1—2!
n* Z2s
Z22 = Z2, Zz = Zzz,
_ Z, _ Zss
Zy, = £ ry n = Z—12

question can be discussed more completely after the equivalence of cer-
tain waveguide configurations to their networks has been shown. The
circuit shown in Fig. 4-19 depicts another case in which an extremely
simple circuit can result from the addition of lengths of transmission
lines. It is evident, therefore, that a general two-terminal-pair network
can be reduced either to a simple shunt element or to a simple series
element. Thus the concepts of ‘““shunt” and ‘““series” lose much of
their significance in transmission-line applications. As a corollary to
this, it is easily seen that a pure shunt element is equivalent to a pure
series element plus a transmission line one-quarter wavelength long.
Likewise, a pure series element is equivalent to a pure shunt element
plus a quarter-wavelength line.

The existence of the circuit shown in Fig. 4-21 is a sound justification
for a terminology that was introduced as slang. Any device, such as a
diaphragm or a screw, introduced into a length of waveguide was spoken
of as a “transformer.” The meaning that this phrase was intended
to convey was merely that the diaphragm could change the amount of
reflected and transmitted energy in the line. Figure 4-21 shows that this
expression can be interpreted quite literally, and the turn ratio of the



Sec. 4-6] TWO-TERMINAL-PAIR NETWORKS 109

equivalent ideal transformer can be calculated in any given case. The
transformer is not located at the position of the diaphragm, but at some
other place along the line.

The equivalent circuit of Fig. 4-21 is particularly useful for interpret-
ing the measured properties of a waveguide junction.! The turn ratio
of the transformer is numerically equal to the voltage standing-wave
ratio at the input terminals when the output terminals are connected to a
matched transmission line. There is a simple relation between the posi-
tion of a short circuit in the output-terminal line and the equivalent
short circuit in the line connected to the input terminals. It is

tan 8(ls — l1) = n tan 8(ls — 1), (38)

where I; and [, represent the distances from the reference planes and I,
and I, are the network parameters.

It is important to notice one fact about all these equivalent circuits.
Although, at a given frequency, the elements of the circuit are perfectly
definite and can be represented by circuit elements familiar to low-
frequency practice, these elements do not have the proper variation with

Y, Ye A

Fic. 4:24.—Transformation from II- to T-network.

frequency. A circuit containing negative susceptances may be con-
sidered, at a single frequency, to be made up of inductances. These
inductances at low frequencies have susceptances inversely proportional
to the frequency. In the waveguide equivalent of this ecircuit, the
inductances may have an arbitrary frequency variation. This serves
merely to emphasize the fact that equivalent circuits are purely artificial
devices and do not completely correspond to reality. In particular
cases it is possible to find equivalent circuits that represent the wave-
guide configurations not only at one frequency but, to a good approxima-
tion, at a whole range of frequencies, provided that this range is less than
one octave. '

Perhaps the most useful transformation from one equivalent eircuit
to another is the familiar one from a I- to a T-network. Let the circuit
elements be designated as indicated in Fig. 424,  The relations between
them are given by

N NMarcuvitz, “ Waveguide Handbook Supplement,”” R Report No. 41, Jan. 23,
1045, p. 2.
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Yo

Zl - F}

—_ YA
Zy = 5 (39)

Y
le = D‘f:
where

D, = YAYB + YAYC + YBYC'. (40)

Since these circuits are duals of one another, the inverse relationships are
identical in form. For example,

A

Ys

T ZZ: ¥ ZiZs + ZoZs

4.7. Symmetrical Two-terminal-pair Networks.—Many waveguide
configurations are symmetrical” about some plane perpendicular to the
axis of the transmission line. If this is the case, the input and output
terminals are indistinguishable, and the number of independent param-
eters needed to specify the network is reduced from three to two. In the
matrix representation, Z;; becomes identical with Zs. The circuits
shown in Figs. 4-16 and 4-20 reduce simply to a transmission line with the
usual parameters: length and characteristic impedance. The relation-
ship between a symmetrical two-terminal-pair network and a line is well
known, and it will not be considered further here. We can state, how-
ever, a useful theorem known as the ‘“bisection theorem.”’* This theorem
can be formulated in a somewhat simpler form than that in which it was
originally stated. If equal voltages are applied to the terminal pairs (1)
and (2) of a symmetrical network, equal currents will flow into the two
pairs of terminals and no current will flow across the plane of symmetry.
The input impedance is then simply (Z11 + Z12). This may be called the
open-circuit impedance of half the network, Z,,9.
If equal voltages are applied to the two pairs of
terminals but in opposite directions, the voltage

z, 75 across the center line of the network must be zero
and the currents entering the terminals equal and
opposite. The input impedance under these con-
ditions is (Z,; — Z2). This impedance is written

i as Z,*. These two values of input impedance
Fre. 4'25",;?13_ ttice et 4re convenient ones to use, in some cases, to specify
a symmetrical network.

A good example of the application of this theorem is the lattice form
of network shown in Fig. 4-25. If equal voltages are applied to the two
ends of the lattice, no current will flow in the impedance Z,. Hence

Zo?® = Zo = Zy + Zyo. (42)

L A. C. Bartlett, The Theory of Electrical Artificial Lines and Filters, Wiley, New
York, 1930, p. 28.

(41)

Zy
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Likewise, if equal but opposite voltages are applied to the terminals,
no current will flow in the impedance Z; and

Z09 = Zv =2y — Za (43)

From these equations, the matrix parameters corresponding to the lattice
case may be found,

Zn ==

_Zi+ 7
) ’

The bisection theorem as originally stated by Bartlett was phrased in
terms of cutting the symmetrical network into two equal parts. The
theorem stated the values of the input impedance of half of the network
when the terminals exposed by this bisection were either open- or short-
circuited. The example of the lattice network has been given because,
for this case, it is difficult to see just how the network should be divided.
The derivation that involves the application of two sources of potential
avoids this difficulty. The lattice network is particularly suitable for
theoretical investigations of the properties of low-frequency networks and
has been much used for this purpose. It can be shown that the lattice
equivalent of any four-terminal network is physically realizable in the
lattice form. ‘“Physically realizable” means, in this case, that it is
unnecessary to use any negative inductances or capacitances to construet
the lattice. The lattice form, on the other hand, is
quite unsuitable for the construction of practical net-
works at low frequencies, since no portion Iis
grounded and the inevitable interaction between the
elements of the network destroys its usefulness.
This is not true of microwave applications. A con-
figuration of conductors that can be reduced to the
lattice form may well be a practical microwave
circuit. As will be shown later, a magic T with ap-
propriate impedances connected to two of the arms is a lattice circuit
having the other two arms as the input and output terminals.

For a network to be symmetrical it is, of course, not necessary that
the arrangement of components be symmetrical. Thus, the more general
lattice shown in Fig. 4-26 has a symmetrical T-network whose matrix
elements are given by

Z

Fra. 426, ~-General
lattice network.

(Z1 + Z)(Zi + Zs)
Zi ¥ Z) + (Z: + Z3)
23 — ZyZ,

(Zi + Zy) + (Zy+ Zs).

le = Zzz =
(45)

Zm =

The circuit shown in Fig. 4-21 also has ne obvious symmetry when the
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input and output terminals are identical.  The matrix elements reduce to
7o (r* 4 1) tan gl
" n® + tan® gl;
ﬂ v (46)
Zh - 7 =

for this case. The three network parameters given in Fig. 4-21 must he
subject to one condition. This condition is that

tan B8l; = — cot Bl (47)

There are many other useful equivalent circuits of more complicated
forms which will not be discussed here in detail.!

4-8. Chains of Four-terminal Networks.—The great utility of the
theory of the two-terminal-pair network lies in the fact that complicated
transmission lines can be regarded
as composed of a number of such
networks connected in cascade.
The transmission line can then be
treated as a whole, or a small part
of it can be reduced to a new T-
F16. 4-27.—Two-terminal networks in cas- network with the proper values of

oade. the network parameters. Fortwo
T-networks in cascade, as shown in Fig. 4-27, the matrix elements of the
combination are given by

Zy =21y 222712 lel'lez Zzlz'lez

Z4 = 7y — L,

H Z12 + Z’11

ZoZ

) — 12,

28 = T (48)
Z53

0 = 7, — —— 212

S

where the superscript ¢ refers to the combination. The process of com-
bination can be continued to any extent, and the whole transmission line
reduced to an equivalent network with three parameters. The utility
of the @BECD matrix is evident when it is applied to this problem. If
the constants of the first network are denoted by unprimed letters and
those of the second by primed ones, then by direct substitution it isfound

that
Vi e ® e @ Vs
R S R e B A

! The reader is referred to the very useful appendices in K. 8. Johnson, Transmis-
sion Circuits for Telephonic Communication, Van Nostrand, New York, 1943.
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It is evident from this that the matrix of the combination is equal to the
product of the matrices of the components.

Let us consider an infinite chain of identical networks. At any pair
of terminals the impedance seen looking in either direction must be
independent of the particular pair of terminals chosén. It must be given
by
Zi

Z=2u-— Zo+ 7 (50)
The solution of this expression is
Z =3(Zv = Zs) + NEZ1 + Z)® — Z3, (51)

Since the networks are identical, this impedance is commonly called the
iterative impedance. The two signs before the square root refer to the two
values of the impedance seen in opposite directions from the pair of ter-
minals. These impedances are alternative parameters with which to
describe the network behavior. Moreover, the ratio of input to output
currents in any network in the chain is given by

Zuly — (Zys + Z)I,.4 = 0, (52)

where the negative sign arises from the convention, earlier established,
that the currents always flow into the network at the upper terminals.
The third network parameter is then defined by

I'n+l T

I =€

(53)

where T is called the tterative propagation constant or the transfer constant
of the network. It is given by

_ —Znt Ze) £ N Zn + Zn)* — 4%

—T
e 27, (54)
This result may be rewritten in a much neater form as
_Zu+Zy .
cosh T' = ‘W (55)

A chain of networks of this sort is thus somewhat analogous to a trans-
mission line but is an unsymmetrical case. The voltage across any pair
of terminals either decreases or increases in a constant ratio along the
network, corresponding in a way to waves propagating either to the right
or to the left.

The iterative impedance has another significance that is sometimes
useful. A two-terminal-pair network may be regarded as a trans-
formation in the complex plane. If the load impedance is represented
as a point on the complex Z;-plane, the input impedance is a point on the
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Zo-plane that is related to the first by the transformation given by

aZL + b

o

Thus, the output plane may be said to be mapped onto the input plane
by this transformation. Transformations of this form are called bilinear
transformations or linear-fractional transformations. They have the
important property that they are conformal; that is, angles in one plane
are transformed to equal angles in the other plane. Thus a grid of
perpendicular intersecting lines is transformed to two sets of circles that
are mutually orthogonal. The iterative impedance, as is evident directly
from Eq. (50), is represented by the point whose coordinates are unchanged
by the transformation. It is thus sometimes referred to as the fized
pownt.

| Zy=Zyp Zaa— 2y, |

| ! Py 1 I

I |

b2, Z, Z), <
Zq' IZI

d ) |
I |

F1g. 4-28.—Networks connected in cascade on the image basis.

Another very common method of connecting networks in cascade
is shown in Fig. 4-28. If the impedances connected to the network satisfy
the relations

ZG = Zn, }

Z, = Zn, (56)

then the network is said to be connected on ar. image-impedance basis.
If Eqgs. (56) are evaluated in terms of the network parameters, Z;, and
Z;, are given by

_ 2

(ZZy — Z3y),

le Z22

" (57)
Zy, = \/#22 (Znn — Z1).
Z

From Egs. (25) it is evident that these impedances can also be expressed

as
Z, = VIVZY, }
Z, = NIPZY.

If

(58)

The third network parameter is again defined in terms of a voltage or
yurrent ratio as

Ve _ |2 -
V) = 7:6 . (09)
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The quantity 8 is called the image transfer constant. As may be easily
verified, it is given by

tanh § = \/Z{,i' = \/Z‘? (60)
cosh § = ————‘?‘Z” (61)
12

If the networks under consideration are symmetrical, the distinetion
between the image impedance and the iterative impedance disappears.
In this case the impedance is commonly spoken of as the characteristic
impedance, since the analogy to a continuous transmission line now
becomes complete. In symmetrical networks,

Z“ = ZI-L = Zn = \/Z%1 - Z%?; (62)
and
cosh I' = cosh § = gl—l (63)
Z12
L 1L L |c lc c
e oo
| |
! c c | Sr 3
] ! I | |
- | I | !
| ! l !

(@) L2 Lp

c
Fra. 4-29.—Simple filters: (a) Low-pass fglt)er, (b) high-pass filter, (¢) bandpass filter.

4.9. Filters.—A chain of two-terminal-pair networks connected in
cascade constitutes a filter. Waves in certain definite bands of fre-
quencies are propagated along the chain without attenuation but with a
definite phase shift from section to section. Since no resistive loss is
assumed to be present, Zi; and Z; are pure imaginary. Equation (61)
shows that cosh 8 is always real. TIf its value is between —1 and +1, 8
must be pure imaginary. The range of frequencies for which this is true
is called the pass band of the filter. When |cosh 6] is greater than unity,
6 is real and there is attenuated propagation without phase shift. By a
suitable choice of the components of each network, it is possible for Z,;
and Z;, to have a frequency dependence such that a given band of fre-
quencies is passed without attenuation. It should be pointed out that
frequencies which are rejected can be said to be reflected from the filter.
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The presence of attenuation does not imply that the energy of the attenu-
ated waves is dissipated in heat. It is, of course, possible to construct
a device for which this is so, in which the attenuation of unwanted
frequencies 18 accomplished by means of resistive elements. Such a
device is usually called an equalizer. It is difficult, however, to have zero
attenuation in the pass band when resistive elements are used. The
microwave analogues of equalizers have, as yet, no important applica-
tions, and no further discussion of their properties will be presented here.
A simple example of a filter is shown in Fig. 4-29a. Each section of
this filter may be taken to be a T-network with series inductance L/2 and
shunt capacitance C. Hence
JoL — j
2 WC

Zyp = — 2.

It

Zn

a

(64)

The characteristic impedance is then

272
Zo= VI = Th = b - (65)

The characteristic impedance is real only for values of w less than the
cutoff value w.. The cutoff frequency is given by

We = ——==* (66)

For angular frequencies below w., Z, is real; 0 is pure imaginary and is
given by

2
cosh8=1—°i—zl£,

(67)

2
6 =jcos! <l -¢ ;C)

The filter is thus known as a low-pass filter. A simple high-pass filter is
shown in Fig. 4-20b. Here

S
2 = — g0 tiel, (68)
Zn = ij,
A
Zo = \/6 ~ e (69)
1
e T T —=x) 70
¥ T 9 VIC (70)

. _ 1
0 = j cos! <1 - W) 71)
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Figure 4.29¢ shows a bandpass filter. For this filter,

11,
. L C
Z11 = Jw *2 — 7 —*’§7T7
wL' - T’
w
o 72)
. C
Zis = —3 7 .
L — —
@ wC
The pass band is given by
Zy
-1 22" = +1
=7, = +
or
—4sh o wLc s
The lower cutoff frequency is
1
‘(:1) = i 73
IRV 774 =
and the upper one is
4 1
@ _r .
The characteristic impedance is given by
L
1—-2LC
w

For small values of w, Z2 will be negative and will be given approximately
hy
;L
Z: ~ —wl. <L + 71)’ (75)
which represents an inductive reactance.

By the use of more complicated structures, filters with several pass
bands, or filters that eliminate a special band while passing all others, can
be constructed. Only infinite chains of identical networks have been
thus far considered. The problem of designing practical filters with
only a few component networks depends very considerably on the manner
in which the filter is terminated. Moreover, it is cften important to have
much larger attenuations near the pass band than can be obtained for
the simple filters that have been used for illustration here. For a more
complete discussion of filter design at microwave frequencies, the reader
is referred to Chaps. 9 and 10 of Vol. 9.
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If the series impedances and the shunt susceptances of the T-networks
that compose the chain are decreased and made to approach zero, the
chain of networks approaches the continuous transmission line that was
discussed in Chap. 3. If the value of the series impedance of the T-net-
work is (Z/2) dz and the shunt admittance is Y dz, then

\

7z dz + =
1 Y dz dz (76)
Zn=yg
and
Z
cosh 8 = 3 Y({dz)2 4+ 1
Since 6 is now small, cosh 8 may be expanded and
+ VZY. 7

dz

By definition, however, 6/dz is identical with the propagation constant vy
of a transmission line, and Eq. (77) is identical with Eq. (12) of Chap. 3.
Similarly, the characteristic impedance becomes

— <, T
Z0 = \/<§ dZ) + —g;

which approaches the value in Eq. (3-12) as dz approaches zero. The
bandpass filter of Fig. 4-29¢ approaches a transmission line with character-

istic impedance
Zo = \/;Z,

where
Z = joL,
Y = jwC — ﬁ
or
L ¥
7y = __C_l_ ) (78)
1 - wiL'C

As before, Z, is real for w? > 1/L’C but remains real for all higher values
of w. The upper cutoff frequency has therefore moved off to infinity as
the impedance of each section was decreased. The propagation constant
is

L

Y= w?lC. (79)
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This variety of high-pass transmission line is an exact analogue of a
waveguide that is propagating an H-mode. If, as in Chap. 3, the voltage
is taken to correspond to the transverse electric field and the current to
the transverse magnetic field, then the impedance per unit length is a
pure inductance, since there is no longitudinal electric field. Thus it

may be assumed that
Z = jop. (80)

The shunt admittance per unit length will have two parts, the first con-
tributed by the displacement current and therefore capacitive and the
second arising from the longitudinal magnetic field. Let it be assumed
that

Y = jwe — 2 C,, (81)
wp

where C,is a constant. To find the value of C,, the propagation constant

may be calculated as
=ZY = —w%u + Cy. (82)

It is evident that C; must be equal to the square of the cutoff wave
number for the mode in question; for the dominant mode in rectangular

—‘;— dz izl- dz - dz 2—: dz xz dz dz
fzms\ ] (——fmm—
edz £ d edz

- |

(@) ()
Fie. 4-30.—(a) Equivalent circuit for dominant-mode transmission in rectangular wave
guide; (b) equivalent transmission line for E-modes.

guide it is (r/a)?.  An equivalent circuit may thus be drawn as shown in
Fig. 4-30a. By similar arguments, it can be shown that the equivalent
transmission line for E-modes may be represented by Fig. 4-30b. It
should be pointed out that if the waveguide is filled with a lossy dielectric,
the circuits of Fig. 4-30 must be altered to have a resistance shunted
across each condenser. Losses that arise from imperfectly conducting
walls are not so simply represented.

4-10. Series and Parallel Connection of Networks.—Two-terminal-
pair networks may be connected in other ways than in cascade. In
Fig. 4-31b, two networks are shown connected in series. The network
parameters of the combination may easily be found by a simple matrix
calculation. If superscripts are used to distinguish the two networks,
and symbols without superscripts to designate the parameters of the
combination, then

Z =2z 4 Zo, (83)
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Figure 4-31a shows two networks connected in parallel. Here, the admit-
tance matrices are most useful, and

Y = YO 4 Yo, (84)

Combinations in which the input terminals are in series while the output
terminals are in parallel, or vice versa, are also possible. They represent,
however, obvious extensions of the simple cases just discussed.

i

= C

—ke ol —

(2)
l Q. ﬂ

(b)

Fia. 4-31.—Two-terminal-pair networks connected (a) in parallel and (b) in series.

An important condition is always imposed in this type of intercon-
nection. When the impedance matrix is set up, it is assumed that the
same currents flow out of the lower terminals of the network as into the
upper terminals. For the relations given by Eqs. (83) and (84) to be
valid this must also be true of the combined network. Moreover, the
potential between, for example, the upper terminals on the input and

1

|
-

(@) )
F16. 4-32.—Right and wrong ways of coupling T-networks in series.
output sides must be undisturbed. Thus, in the series connection, if
each network is represented by a T-network, the network must be
arranged as in Fig. 4-32a and not as shown in Fig. 4-32b. In the arrange-
ment b, the conditions are obviously violated by the short-circuiting of
the lower network. For a further discussion of this question, the reader
is referred to Guillemin! and the references there cited.

1E. A. Guillemin, Communication Networks, Vol. 11, Wiley, New York 1935,
Chap. 4, pp. 147f.
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4-11. Three-terminal-pair Networks.—Little has been done on the
investigation of three-terminal-pair networks as low-frequency circuits.
In the microwave field, many devices employ T-junctions whose eqitiva-
lent circuits are of this type. The impedance matrix is of the third order
and contains nine elements. From the reciprocity relations, the matrix
must be symmetrical; therefore there are only six independent parameters,

[Z“ Zy T
Z = ZlZ Z22 Z23 "
\Z1s Zas Zss

Several convenient equivalent circuits exist by which the behavior of the
network can be described.  An obvious circuit is shown in Fig. 4-33. The

"
Vs
———————
Z33= 23~ Zy
. 2))~23-2)3 Zy
i, —= — AN AN —-—,

v,

i
F16. 4-33.—Equivalent circuit for three-terminal-pair network.

values of the circuit elements in terms of the matrix components are
indicated in the figzure. They may be verified by inspection. If this
circuit represents a symmetrical T-junction with a plane of symmetry
through the center line between terminals (3), the number of independent
parameters is reduced to four and the impedance matrix takes the special
form

le Z12 Z13
Z = Z12 le Z13 .
Z13 Z13 Z33

Because many microwave junctions have a symmetry of this type, this
represents an important case. Other equivalent circuits may be obtained
from that shown in Fig. 4-33 by the transformation of portions of the
circuit from T- to I-networks or to some of the transmission-line forms
shown in Figs. 416 to 4:23 inclusive (See. 4-6).

Since it is not required that the equivalent circuit represent the volt-
age between one terminal and another, the six input lines of Fig. 4:33 may
be reduced to four by connecting three of the lines together. If this
common point is designated as the ground point, then another circuit
may be drawn, with four terminals and six independent parameters, as
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shown in Fig. 4-34. Here any pair of input terminals is to be taken as
one of the numbered points and the ground point. The four terminal
points may be thought of as the four corners of a tetrahedron, and the
circuit elements then lie along the edges of the tetrahedron. This
circuit also may be transformed to other forms by the usual T- to II-trans-
formation. It must be noted that although the circuits in Figs. 4-33 and
4-34 may be represented by the same impedance matrix, it is impossible
to transform one of these circuits into the other. In this sense the two
circuits are not equivalent. They
differ in the relationship that ex- .
ists between the voltage difference 3
between, for example, the upper
members of terminals (1) and (2) N3
of Fig. 4-33 and the corresponding :3@%:::
points, (1) and (2), of Fig. 4:34. 1 2

m X N2

The impedance matrix implies

1 2
b AYAY
N3 5
: :l1 :%J E: :l2 :
3
Fig. 4-34.—Circuit with Fig. 4-35.—Transformer representation of
four terminals and six inde- series and shunt T-junctions.

pendent parameters.

nothing about this voltage difference but the circuits define it uniquely.
This fact must be kept clearly in mind when equivalent circuits for micro-
wave devices are employed.

The four-terminal circuit of Fig. 4-34, rather than the more usual
T- or I-network,! is the exact equivalent circuit for a low-frequency
transducer. In the low-frequency region this problem is usually of
importance only in connection with the exact equivalent-circuit repre-
sentation of a practical transformer.

Other circuits whose components are transmission lines are often
useful in microwave work. Figure 4-35 shows two extremely useful
forms. A transformer and a length of transmission line have been
included in each arm of each of the networks, although it is obvious that
one transformer may be assigned an arbitrary turn ratio. These two
circuits may be said to represent series and shunt T-junctions. It isto be

! See M. A. Starr, Electric Circuits and Wave Filiers, 2d ed., Pitman, London, 1944,
Chap. VI, and references there cited.
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emphasized that either circuit is equally valid for any T-junctien. The
choice between the two circuits may depend, for example, upon the
similarity between the physical configuration of the device and that of
the circuit, and this might be a valid reason for choosing one in preference
to the other.

Circuits of another type which may be useful in some circumstances
are shownin Fig. 4-36. If three two-terminal-pair networks are connected
in series or in shunt, equivalent circuits are obtained that have some

3
I 3
1 ImLa- 2 1:@:4:2
(a) ]

1 X L] P2

3
(c)

F1a. 4:36.-—Combination of three two-terminal-pair networks to give a three-terminal-pair
network.

extra parameters. By inserting the T- or Il-equivalents of the two-
terminal-pair networks, it is easy to see which of the elements may be
combined. By means of the II- to T-transformation many other equiva-
lent circuits may also be obtained. It should be pointed out that if
II-networks are used in Fig. 4:36¢, the circuit in Fig. 4-34 is obtained. To
show that the circuit of Fig. 4-36a is a valid one, note that the intercon-
nections require that

vs = ve + v1,

15 = —ig = l.7,
where the terminals (5), (6), and (7) are indicated in the figure. By
means of these three equations 75, ¢, and 7z may be eliminated from the
set of six equations that represent the three two-terminal-pair networks.
The first member of this set is, for example,

v1 = Znts + Zists.

The result of eliminating these parameters will be three equations in the
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three currents ¢y, ¢z, 73, and the impedance matrix is the matrix of these
three equations. It might be thought that some general matrix method
would be available to perform this elimination in a systematic fashion.
Although such a method exists, it is usually too complicated to apply. A
straightforward manipulation with the linear equations is much quicker
and easier.

Circuits of the forms shown in Fig. 4-35 are particularly convenient
for finding the effect on the power transfer from terminals (1) to (2),
for example, of a load on terminal (3). It is immediately obvious that a
reactive load of the proper value on terminals (3) will cause no voltage
to appear across terminals (2) when voltage is applied to terminals (1).
The same value of the load will also make the voltage across terminals (1)
equal to zero when voltage is applied to terminals (2). Moreover, if
the circuit is symmetrical about a plane through terminals (3), so that
71 = Ny, then for some value of a reactive load on terminals (3), the input
impedance seen from terminals (1) and (2) is the characteristic impedance.

The matrix manipulation that corresponds to the application of a
load to one pair of terminals is again most easily seen from a considera-
tion of the corresponding set of linear equations. If a load Z; is put on
terminals (3), then

K]

Z3 = — 1{.—3}
where the negative sign arises from the convention that currents and
voltages are always designated as positive when they represent power flow
into the network. If 75 is eliminated from the equation by means of this
relation, there results the new second-order matrix whose elements are

, 7%
In=Iu—g

r rzl Z Z
Ly =2y = Zua — Zﬁ;

, 7

D=2 = =g

4-12. Circuits with N Terminal Pairs.—The equivalent circuits that
have been briefly discussed for two- and three-terminalpair networks
can be generalized to circuits for the general case of N terminal pairs.
The impedance or admittance matrix is of the Nth order and possesses
N+ N-D+HN=-2)4 - 4+1=N{ + 1)/2 independent ele-
ments. The other N* — N(¥ + 1)/2 elements are equal, by the reci-
procity relation, to corresponding independent elements so that Z;; = Z;.
There are three principal classes of equivalent circuits that can be con-
structed for this general case. A circuit analogous to that shown in
Fig. 4-34 can be constructed. Tet ug choose N 4+ | points.  Then let
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us call one of these points the common terminal of all the N input lines.
Now if an impedance element is connected between each pair of points,
the number of such elements is given by the binomial coefficient

(N+1 NN+ 1)
2 )T T2

This is just the number of independent elements needed. The well-
known II-network is the result when N = 2.

In Sec. 4:6, it was noted that a II-network may be represented also
by a line one-quarter wavelength long, of arbitrary impedance, shunted
at each end by an arbitrary admittance. The circuit whose construction
was described in the preceding paragraph may be thought of as made up
of II-networks connected between each pair of network terminals. If
these Il-networks are replaced with
lines shunted by admittances, the
equivalent circuit shown in Fig. 4-37
is obtained for the four-terminal-

Fig. 4-37.—Equivalent circuit for a Fia. 4-38.——Reduction of a four-terminal-
four-terminal-pair network constructed pair network to one with three terminal
of quarter-wavelength lines. pairs and external impedances.

pair case. The parameters are the six characteristic impedances of the
quarter-wavelength lines and the four shunt admittances, making, in
all, the necessary 10 constants.

There is a third general approach to finding the equivalent circuit
for N pairs of terminals. Suppose that it can be arranged that the sum
of the applied potentials is zero. The lines can be arranged as shown
schematically in Fig. 4:38, where the case for N = 4 is indicated. Tt
should be noticed that the four-terminal network at the center of the
figure has flowing into it currents whose sum is zero. This four-terminal
device therefore satisfies the requirement that the voltages across its
terminals are linearly related to the currents, and is equivalent to a three-
terminal-pair network. The voltages v, must be derived from the
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applied voltages v; by the relation

1);- =v; — Zj'L.j.
The value of the impedances Z; must now be found. If Zz; is subtracted
from each equation of the fundamental set, then

vy — Zyty = (Zu - Zl)il + Zita + - -+ Zints
Vg — Zzl'z = Z21i1 + (Zn - Zz)iz + - 4 Zoyis
UN — ZN/L'N = Zmil + ZNz’iz + -+ (ZNN - Zx)l'x.

To enforce the condition Zv} = 0, it is required that the sum of these
equations be zero, independently of the values of the currents. There-

3
' =1,
| i
0——————24—
h’z 1,

STVVV 12—1,

‘3 13

— | L3&

=l
o i == j E; j g

1'16. 4-39.—Reduction of equivalent circuit for N-terininal-pair network by means of ideal
transformers.

fore let 7; take a finite value while all the other ¢’s are zero. Adding the
equations results in

0= (Z11 + Z21 + R + ZN1>7:1 - Zlil

or, in general,
Zj - 2 Z];/.

i
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Now if the equations are expressed in terms of v; whose sum is zero and
(4; — ;41) are used as independent variables, the set of N equations
reduces to N — 1 equations, since one equation is redundant.!

To repeat this process, it should be remembered that the ¥ — 1
equations correspond to N — 1 pairs of terminals, each pair having a
member in common with all other pairs. This condition can be removed
by the use of ideal transformers. Figure 4-39 shows schematically how
this may be aceomplished. The process of reduction can be continued
until only a two-terminal-pair network remains. For this network any
standard circuit form may be used. It should be noted that at each step
an impedance in each line {s removed and the total number of parameters
is correct.

To conclude this section, the change in the elements of the impedance
matrix when a load is placed on one terminal pair

R R
may be stated. If a load Z; is"placed across the
kth pair of terminals, the new impedance elements
are v c
ZivZr
L= Ty — REE

Zi=Zi= 7. v 7, v
The new impedance matrix has elements Z;;, and the ~ F1c. 4-40.—Series-reso-
kth row and column are struck out. nant cireuit.

4-13. Resonant Circuits.—In Sec. 4-3 it was shown that the input
reactance of a network always increases with increasing frequency. At
the frequencies at which the reactance is zero, the network is said to be
resonant. The behavior of the network in the neighborhood of resonance
is of considerable importance in many applications. The simplest case
is that of a resistor, a capacitance, and an inductance in series with a
generator, as shown in Fig. 4-40. The impedance is

. 1

1
wC’
- 1 -
VILC
For microwave applications other parameters are useful. The character-
istic impedance Z, of the circuit is defined as

L
““\/’(v'

and the parameter @, sometimes called the *“quality ™ or @-factor of the

P0f, Frank M. Starr. Trans, ATEE. b1, 287 (June 1032,

At resonance,

wlh =
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circuit, is
g Ze_wb_ 1
R R wolRC
In terms of these quantities,

Z=R+ch(f’——‘—°9>

Near the resonant frequency, the approximation
w = wy + Aw
may be made, where Aw is small, and hence
7z = R(l + 2jQAi’).
wo

If Q is large, then the resistance and the reactance are equal when

= 4 @0
Aw = £ 20

The power P absorbed by the circuit is 3R|/)? or
1v: 1

P = 5 R T A;;i‘z)
14+(2Q=—=
wo
where V is the generator voltage. Thus maximum power is absorbed

at resonance. The absorbed power falls to half this maximum value at
the frequencies where the reactance is equal to the resistance.

Fia. 4-41.—Shunt-resonant cireuit. Fie, 4-42.-— A second shunt-resonant eireuit.

The duality principle may be invoked to obtain the corresponding

relations for the shunt circuit shown in Fig. 4-41. These relations are
o= G

)vc wQC _ 1

Q=4 = ¢ ~ar

¢ (1 +2/Q jﬁ)

v
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A second parallel circuit, shown in Fig. 4-42, may be reduced to the pre-
ceding circuit in the low-loss case. The admittance of the inductance
and resistance in =eries is

Y = 1 _ R —juL
T R+ jul. T R4 it
If R? K wil?,
_k _J
Y=om—or
and the circuits are equivalent if
R
¢ = g

The resonance phenomenon just described is one of forced oscillations.
If a network is short-circuited and excited by some transient process,
free oscillations will occur whose frequency is given by the equation

Z(w)=R+j(wL—;U]—C>=0

in the simple series circuit. The roots of this equation are complex and

are
. __ R [RT 1
JO= ToL T Na: T IC

E > é or Rk z 27,
2L~ ~/LC

If

Jw is real and no oscillations occur. There is only an exponential decay
of the currents and the voltages. If the resistance is smaller, free oscil-
lations occur whose frequency w, is

1 k2
“ = N\I¢ T ¥

In terms of the resonant frequency w

L1
wf:wo\/l_@‘

Hence, only when @Q is large is the frequency of free oscillation equal to
the resonant frequency.

The shunt cases may be treated in a similar fashion, the case of free
oscillation being given by the condition Y(w) = 0. Free oscillations in
networks with more than two terminal pairs may be treated in an anal-
ogous fashion.



CHAPTER 5
GENERAL MICROWAVE CIRCUIT THEOREMS

By R. H. Dickr

6-1. Some General Properties of a Waveguide Junction.—A wave-
guide junction! in the generalized sense that is to be used here is defined
as a region of space completely enclosed by a perfectly conducting metal
surface except for one or more transmission lines that perforate the
surface (Fig. 5-1). Nothing will be
assumed about the interior of the
junction except that the dielectric
constant, permeability, and conduc-
tivity are everywhere within it inde-
pendent of time and of the field
quantities. It will be assumed for
Fia. 5-1..—A gener:'lized waveguide junc- the present that there is only one

o propagating mode for each of the
transmission lines. This definition will be extended later to include cases
in which several modes are present.

For reasons that seem to be largely historical, two different approaches
to electrical problems have been developed. The first can be called the
Maxwellian approach. It consists of the introduction of certain field
quantities that are interrelated by a set of linear differential equations
and the solution of these equations under particular boundary conditions.
This approach is the natural outgrowth of the study of electrostatics
which was the chief concern of early physicists interested in electrical
phenomena.

The second approach, which may be called the electrical-engineering
approach, may be said to have resulted from the discovery of the galvanic
cell. The electric field strength produced by such a device is usually
small; and as a result, the electric field loses much of its importance.
Instead, the current flow in conductors becomes the primary physical
quantity. In place of the electric field, its line integral, or potential

1 For such a junction, the term “black box’’ has been used extensively, in recent
vears, by a certain small group of semimetamorphosed physicists at the Radiation
Laboratory. This term is discarded here because it suggests a Hohlraum or some-
thing that is totally absorbing. The low-frequency term ‘network’’ is misleading in
a discussion of waveguides, since it implies the presence of wires.

130
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difference, becomes important. Kirchhoff’s laws lead in a natural way
to the solution of problems involving d-c¢ networks. With the introduc-
tion of alternating current as a practical source of commercial power, it
became necessary to make network calculations for a-c as well as d-c
circuits. It was then found that Kirchhoff’s laws could be extended to
apply to a-c circuits through the artifice of representing alternating cur-
rents and voltages by means of complex numbers. Sometimes there is
difficulty in reconciling these two methods of approach, and it is one of
the purposes of this chapter to attempt to clarify their equivalence.

One of the difficulties with the Maxwellian approach lies in its ambi-
tion. It asks for a complete description of the field in a certain region
subject to certain boundary conditions. This is usually much more
information than one needs or wants. For example, one is usually not
interested in knowing the distribution of the magnetic field in an inductor.
Two numbers, the values of the inductance and the resistance, usually
suffice. If this overabundant ambition of the Maxwellian approach is
somewhat curtailed, the method gives perfectly reasonable, simple results.
As will be seen presently, the curtailment consists in limiting the inquiry
to certain energy integrals over the region under consideration.

Another lesson that the Maxwellians can learn from the engineers is
the importance of a simply periodic solution. Historically, the engineers
were interested in the periodic solution because it described the electro-
magnetic effect that was produced by their generators. In fact, this is
still the most important reason for studying this solution. However,
to pacify the Maxwellians, it should be pointed out that the solution of
Maxwell’s equations is simplified if the field quantities are replaced by
Fourier integrals with respect to time. The resulting differential equa-
tions for the Fourier transforms are in general simpler than the original
equations.

The engineering approach is built upon the concept of the lumped
impedance element and, at first glance, would seem to break down at
microwave frequencies where the lumped impedance element loses its
significance. It is sometimes possible to regard the distributed system as
composed of an infinite number of lumped parameters. An example of
this is the coaxial line. Also it is always possible to introduce the dis-
placement current as a fictitious current in an infinite number of fictitious
networks to describe the electromagnetic field in the absence of con-
ductors. This latter representation does not seem to be particularly
novel. It leads to results of essentially the same type as does the field
approach to the problem.

It has been pointed out that a complete solution of an electromagnetic
problem is not always desired. Often a description of conditions at the
terminals of a junction is sufficient. It is a purpose of the remainder of

.
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the chapter to make use of Maxwell’s equations to obtain conditions
that hold at the terminals of a general waveguide junction. In so doing,
it will be found that the stored electric and magnetic energy and the
dissipated power are the three most important field parameters for the
description of conditions at the terminals of a junction.

THE TERMINATION OF A SINGLE TRANSMISSION LINE

If the generalized waveguide junction is connected to external regions
by a single transmission line, it degenerates from a junction to a termina-
tion. The termination of a single transmission line is sometimes called,
at low frequencies, an impedor or
a single-terminal-pair network.
This terminology may also be used
at microwave frequencies. Refer-
ring to Fig. 5-2, the termination is_
imagined to be surrounded by a
surface 8. This surface is as-
sumed to be completely exterior to
the termination and to cut the
transmission line (illustrated as a

. S rectangular waveguide) perpendic-

Fie. 5'2'_"2;:,:?:;1:: © lermination In S lar to its axis at some plane here-

after called the terminals. The

portion of the transmission line inside the surface is now considered to be
part of the termination.

The location of the terminals is completely arbitrary. However, it is
desirable for purposes of clarity to consider them far enough from the
actual end of the transmission line so that the amplitudes of the higher,
nonpropagating modes that may exist within the termination are essen-
tially zero at the terminals.

6-2. Poynting’s Energy Theorem for a Periodic Field. —Maxwell’s
equations for a simply periodic field are

as

Terminals

curl H — (jwe + ¢)E = 0,

curl E 4 jouH = 0, T
div eE = p,

div yH = 0,

where E, H, and p are complex numbers such that E’({) = Re (Ee**) and
similarly for H and p.

A connecting link between field theory and electrical engineering can
be found in Poynting’s energy theorem limited to periodic fields. It
was shown in Sec. 2-2 that if

divE X H* =H*:curl E — E - curl H*
= —jopH* - H — (¢ — jwe)E* - E 2
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be integrated over the volume enclosed by a surface S and the volume
integral converted to a surface integral in the usual way, then the surface

integral may be written as the sum of three volume integrals, as shown
in Eq. (3).

/EXH*-dS= —jw/pH*-Hdv
s

+jw/'eE*'Edv—/aE*'Edv. 3)

Assume for a surface S the one illustrated in Fig. 5-2. Since the field
vanishes everywhere over the surface S except at the terminals, the sur-
face integral reduces to an integral over the terminals. Since dS is
perpendicular to the axis of the transmission line, only the transverse
components of E and H enter into the integral. If the coordinates z
and y in the terminal plane of the transmission line are introduced, then

/ E X H*-dS = f (E-H* — E,H%) dz dy. (4)
S

It is convenient to introduce a complex terminal “current’’ and “volt-
age’’ 7 and e as was done in Sec. 4-9.

Let
E. = of(2)y),
E, = ¢f(z,y),
: 5
H: = ig:(z,y), ®)
Hy, = ig,(xy),

where f;, f,, g- and g, are real functions of the coordinates which give the
distribution of the field. It was shown in Chap. 2 that the transverse
electric (or magnetic) components are in phase with each other, i.e.,
E and H at a given point are constant in direction. It is assumed that
the functions are normalized in such a way that

If

,/S (fogy — fu92) dx dy —L (6)
Then

/SE X H* - dS = —ei* @)

ei*=jw[/uH*-Hdv—/eE*~Edv]+/aE*-Edv. 8)

Equation (8) is rather fundamental. It may be written as

ei* = 4jo(Wy — W) + 2P, (9)

and

where Wy and W are the average stored magnetic and electrie encrgies
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and P is the average dissipated power. It is to be remembered that it is
the stored energies and dissipated power within the termination which
enter into Eq. (9) and that the portion of the transmission line interior
to the surface S must be included.

5-3. Uniqueness of Terminal Voltages and Currents.—It is evident
that to any permissible field solution there corresponds a definite terminal
voltage and current. It will now be shown that for any particular value
of the voltage (or current) there corresponds a unique field distribution
inside the termination.

Let us assume that there are two solutions of the wave equation which
satisfy boundary conditions. It will be shown that identical terminal
currents or voltages imply identical solutions. Let the two solutions be

E,, H, with terminal parameters ¢,, 7,,
E., H, with terminal parameters e,, 7s.

From the linearity of Maxwell’s equations, it follows that (E, — E,) and
(H, — H,) with the terminal parameters (e; — ¢.) and (7, — ;) also form
asolution. If this solution be substituted in Eq. (8), there follows

(e1 — €)@} — ¢%) = jo [/ #(HY — HY) - (H, — Ho) dv

- / «(E¥ — E%) - (E; — Ey) dv] + / o(E* — E%) - (E: — Ey))dv. (10)

Now if either e; = ¢, or 7, = 7y, the left side of Eq. (10) vanishes and
the real and imaginary parts of the right side independently vanish.
An inspection of the real part (the dissipated-power term) shows that the
integrand is positive definite and the integral vanishes only if E; = E,
when ¢ = 0. If the electromagnetic field is confined to the termination
by real metal walls with finite conductivity, however, the nonvanishing
electric fields, E; and E, must be identical for a finite distance inside these
walls. Since these solutions are nonvanishing, identical, and have identi-
cal derivatives over the boundaries, the solutions are identical. Since
E, = E, throughout the enclosure, the vanishing of the imaginary part of
Eq. (10) requires that H; = H.. These conditions, of course, require
that ¢; = e, and 2, = 7.

The theorem breaks down in the case of completely lossless enclosures.
Such enclosures are, of course, not physically realizable. However, a
lossless termination is an artifice that is introduced for purposes of con-
venience in the mathematical treatment of many problems. For this
reason it is interesting to examine the nature of the departures from the
condition of uniqueness. When the termination is completely lossless,
the dissipation term in Eq. (10) vanishes identically and the only condi-
tion imposed by Eq. (10} is the vanishing of the imaginary part of the
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right-hand side. This requires that the average stored magnetic and
electric energies be equal and this condition may be defined as resonance.
This resonance condition, however, can be satisfied only at certain discrete
frequencies, the natural resonances of the termination. For all other
frequencies E; = E,, H; = H,, and the uniqueness theorem is satisfied.

In completely lossless terminations resonances of two different types
may be considered. In the first type there is no coupling between the
terminals and the resonance fields, as though there were an isolated cavity
somewhere inside the termination. Clearly a resonance of this type is of
no particular importance. The second type of resonance couples with
the input terminals, and in this case the terminal current is not given
uniquely by the terminal voltage. Of course, it must be emphasized that
these conditions are never encountered in practice; therefore whenever
lossless terminations are discussed, it will be assumed that the terminal
voltage is uniquely related to the terminal current and the field quantities.

It is evident from the uniqueness theorem and from the linearity of
Maxwell’s equations that a change in the argument or modulus of e;
will result in a corresponding change in the argument or modulus of the
field quantities inside the termination. Thus the field quantities inside
the termination are proportional to the voltage or current at the terminals.
It follows from this that the terminal current 7 is proportional to the
terminal voltage e. Thus, as before, values Z(») and Y(w) may be

defined such that
1

e
5= Z(w) = Vo) (11)

They are called respectively the impedance and admittance of the
termination. Z and Y are complex numbers that depend only on the
frequency of the periodic field and the nature of the termination.

6-4. Connections between Impedance and Stored and Dissipated
Energy.—If iZ is substituted for ¢ in Eq. (8), there results

i*iZ=jw(/uH*-Hdv—/eE*-Edv)—{—/aE*-Edv (12)

_ 2u(Wn— Wi + P,

Fit*

or

VA (13)

Wy and Wz are the mean stored magnetic and electric energies; P is the
average power dissipated in the termination. In the same way,
_ 2jo(We — Wa) + P
= e

zE€

Y (14)

From Egs. (13) and (14) it is seen that
Z*(—w) = Z(w), (15)



136 GENERAL MICROWAVE CIRCUIT THEOREMS [SEC. 55

and
Y*(—w) = V(o). (16)
Several things are to be noticed about Eqs. (13) and (14). Let
Z =R+ 3jX

(R and X real).

1. Since P =2 0, R = 0.

2. If P = 0, then B = 0, or Z is purely imaginary.

3. If X =0, Wg = Wgy; this is the resonance case.

4. From Egs. (15) and (16) it can be seen that for a lossless termina-
tion the reactance and the susceptance are both odd functions of
frequency.

Equations (13) and (14) indicate the steps that may be taken to
produce desired impedance effects at microwave frequencies. For
instance, any change in configuration that increases the amount of stored
magnetic energy in a termination automatically increases the reactance
at the terminals.

§-5. Field Quantities in a Lossless Termination.—One of the results
obtainable from the uniqueness theorem concerns a lossless termination.
It will be shown that in such a termination the electric field is everywhere
in phase and the magnetic field is everywhere 90° out of phase with the
electric field. Let us assume that E and H, with corresponding terminal
quantities e and ¢, are a permissible solution of the field equations for a
particular lossless termination. Substitute for E and H in Maxwell’s
equations [Eqgs. (1)] the following quantities:

E=E 4+ E,
H = H, 4+ H..

The subscripts r and 7 denote, respectively, that the quantities are the
veal and imaginary portions of the field vectors. Since the termination
is assumed to be lossless,

c=0
for

E =0.

The imaginary portion of the first equation, the real portion of the second,
the real portion of the third, and the imaginary portion of the fourth are

curl H; — jweE, = 0,
curl E, + jouH; = 0,
div ¢E, = p,,
div uH; = 0.

an

It is evident that E, and H; represent a particular solution of Muax-
well’s equations satisfying the boundary conditions. To the solution
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E,, H; there correspond terminal voltage and current e- and 7. By the
uniqueness theorem, the above particular solution is unique. Any
other solution can be obtained from this solution by the multiplication of
the field quantities by some complex number. E, is a solution with the
electric field everywhere in phase or 180° out of phase, and the phase of
the magnetic field is 90° or 270° with respect to the electric field.

5-6. Wave Formalism.—It has been shown that the field quantities
inside a termination, or single-terminal-pair network, are uniquely
determined by either the current or voltage at the terminals. Voltages
and currents are not the only useful parameters that can be used as
representations for the fields inside a termination. Another very useful
representation can be obtained from the amplitudes of the incident and
scattered waves.

The amplitude and phase of the transverse component of the electric
field in the incident wave, measured at the terminals, will be designated
by a, which will be so normalized that $aa* represents the incident power.
In a similar way b will be used to designate the amplitude and phase of
the reflected wave. It is easily seen that the uniqueness theorem also
applies to the representation in terms of incident and reflected waves.
For any incident or reflected wave the fields inside the termination are
uniquely defined. As was shown above, the impedance Z = ¢/7 is a
quantity that is a function only of the frequency and the shape of the
termination. In an analogous way one can define the reflection coefficient,

b

T = Y (18)

1t is evident that the reflection coefficient is defined for a particular refer-
ence plane or terminal pair.

A connection between the representation in terms of currents and

voltages and the representation by incident and reflected waves is easily

shown. Since eis a measure of the total transverse electric field,
e=g(a+0b)=gal +7), (19)

where ¢ is some proportionality factor. In the same way,
.1 1
t=—-(a —b)==-a(l —T), 20
P ( ) p ( ) (20)

where b has a negative sign because the magnetic field is reversed in
the reflected wave. The proportionality factor is 1/¢ in Eq. (20) because
of the way in which the quantities are normalized with respect to power
[see Eq. (7)]. The introduction of wave amplitudes a and b defined in
Eqgs. (19) and (20) is a convenient artifice even in low-frequency circuits
where the wave nature of the solutions is not obvious. '
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5-7. Connection between the Reflection Coefficient and Stored
Energy.—If Eqgs. (19) and (20) are substituted in Eq. (8),

aa*(1 + IH(1 — T¥)

=jw(/ uH*'Hdv—/eE*-Edv)+/aE*-Edv, (21)

and
_ 2e(Wu — We) + P

v B
(1L+ D)1 = 1% e (22)
If Eq. (22) is broken into its real and imaginary parts
P
1 —T* = To*a (23)
and
| N _ jo(We — Wg)
5 (I = I%) = jlm(r) = L5 8 (24)
In Eq. (23), since P is positive,
r*r < . (25)

Condition (25) is equivalent to the statement that the reflected power is
always equal to or less than the incident power. If the termination is
lossless, P = 0 and

T*l = 1. (26)
Equation (24) relates the imaginary part of the reflection coefficient
to the stored electric and magnetic energy. Since |T'| £ 1,

W — Wi < %é a*a. (27)

Stated in words Eq. (27) says that for 1 watt of power incident on a
termination, the difference between the magnetic and electric stored
energy is always less than or equal to 1/w joules.

If Egs. (23) and (24), are solved for T,

I'= /1 — P ei4, }

_ [V = WD (28)
¢ = sIn \/—1 7
where

, w

IVE = %’d;i’l)
, w

IVH = ;_?f:*l!

p=r
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THE JUNCTION OF SEVERAL TRANSMISSION LINES

In the previous section were considered some of the general properties
of the termination of a single transmission line. The extension of these
results to cases involving more
than one transmission line is
straightforward. Let us consider
a junction having N pairs of ter-
minals. As in the previous case,
the junction may be enclosed in a
surface S which cuts the various
transmission lines perpendicular
to their axes (see Fig. 53). As 4 _ _
before use will be made of Poynt- % 5'3'—Exampjlzniiignfour'termmal'pm
ing’s energy theorem for periodic
fields [Eq. (3)]. The integral of the Poynting vector over the surface 8
can be evaluated in terms of terminal voltages and currents.

/SExH*-dS= —Eeni,,, (29)

n

Tern11inals 2

where e, and 7, are the voltage and current of the nth terminal pair and are
defined in the same way as in the previous section. Substituting Eq.
(9) in Eq. (25),

enl¥ = 4jo(Wy — We) + 2P, (30)

n

where, as before, Wy and Wi are the average electric and magnetic
energies in the junction and P is the average dissipated power. Equa-
tion (30) provides a connection between the terminal quantities and the
field quantities.

5-8. Extension of the Uniqueness Theorem to N-terminal-pair Junc-
tions.—The uniqueness theorem of Sec. 5-3 is easily extended to the case
of N-terminal-pair junctions. It leads to the result that to a particular
value of the current or voltage at each of the N pairs of terminals there
corresponds a unique field distribution inside the junction. This result
is valid provided the junction is not completely lossless. As before, the
theorem will be extended to include the idealized lossless junction.
Another simple extension of the previous results which follows from the
linearity of Maxwell’s equations and from the uniqueness theorem is the
following: The electric and magnetie fields at any point inside the junc-
tion are linear functions of the currents or voltages applied to the N
terminals. As a corollary to the above, it can be stated that the N
terminal currents are linearily related to the N terminal voltages.



140 GENERAL MICROWAVE CIRCUIT THEOREMS [Sec. 59

5-9. Impedance and Admittance Matrix.—Since the N terminal cur-
rents and voltages of the junction are connected by linear equations, N?
quantities Z,, can be defined such that

ép = 2 Zpgla 31

q

The N? domponents Z ,q can be regarded as forming an Nth-order square
matrix, )

le Zl2
Z21 Z22

Z= (32)

Matrix (32) will be called the impedance matrix. The N components
1, and e, can be arranged as column vectors,

’1:1 (2%
i=|-|, e=]|"}]| (33)

iN én

The vectors i and e will in the future be called the current and voltage
vectors of the junction. The matrix formulation of Eq. (31) is

e = Zi. (34)

The linear relation between the terminal currents and voltages can
be expressed in another way if Eq. (31) is solved for the N currents.

Then
i = 2 Yytn (35)

q
Again a matrix Y can be defined such that
)’11 Y12 N
Ygl Y-n C e
Y=|- . . (36)

J

This matrix will be called the admittance matrix;

i = Ye. (87)
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If it is assumed that Z is nonsingular,! Eq. (34) can be multiplied by
Z-1
’ Z-e = Z-'Zi = i,

Z-t =Y. (38)

It is worth while to notice the analogy between Eqgs. (34) and (11).
They are formally identical. The impedance Z of Eq. (11) has been
generalized to an impedance matrix. The current and voltage have
been generalized to current and voltage column vectors. For a termina-
tion, that is, a single-terminal-pair network, Eq. (34) reduces to Eq. (11).

6-10. Symmetry of Impedance and Admittance Matrices.—It will
now be shown that the impedance and admittance matrices, matrices
(32) and (36), are symmetrical. By a symmetrical matrix is meant one
for which

Zon = Zum,
You = Vo, } (39)

Let there be two solutions of Maxwell’s equations that satisfy the bound-
ary conditions imposed by the junction. The field quantities and
terminal quantities of the two solutions will be distinguished by super-
scripts 1 and 2. From Egs. (1),

curl HV — (jwe 4+ ¢)E® = 0,
curl E® 4 jouH® = 0; } (40)
curl H® — (jwe + ¢)E®@ = 0,
curl E® + jouH® = 0, } (1)

Likewise

div [E) X H® — E@ X HV]
= H® curl E® — E® curl H® — H® cwl E® 4 E® curl HV,  (42)

From Eqs. (40) and (41),
div [E® X H® — E® X HV] = 0. (43)

[f I5q. (43) is integrated over the volume enclosed by the surface,

0= / div [E® X H® — E® X HV] dv
= / [ED X H® — E® X HVJ-dS.  (44)
The right-hand side of Eq. (44) can be expressed in terms of terminal
voltages and currents [see Eq. (29)],
0= f [ED X H® — E® X HV| - dS = 2 [ei — e@iV].  (45)

LIf Z were singular, the connection between the currents and voltages would not
he unique.
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Equation (45) holds for any two sets of applied voltages at the terminals.
In particular let

b =0, j=1
H ’ ] ;é 1 } (46)

&P = 0, J#2
The sum given in Eq. (45) reduces, for this special case, to
ePrP — e = 0. 47

However, for the special case considered

WP = Ve,
1'(11) = Y;ie;‘). } (48)
Substituting (48) in (47), the result is
Y=Y (49)

It is obvious that there is nothing special about the indices 1 and 2 and
that
Yu = Yu, for any k and . (50)

It can be shown in a similar way that
Zu = Zn. (51)

Therefore, the impedance and admittance matrices are always
symmetrical.

6-11. Physical Realizability.—Certain conditions are imposed on the
impedance and admittance matrices by the energy theorem [Eq. (30)].
If en = ZZ.minissubstituted in Eq. (30),

2 T it = 4Jo(Wa — Wz) + 2P, (52)

In order to simplify the discussion, a two-terminal-pair junction will be
considered first. The real part of Eq. (52) can be written as
ifian + (12*11 + 'L‘2’L.)1“)R12 + 7:;7:2R22 = 2P, (53)

where R.; is the real part of Z;;. If either 7, or i3 = 0, since P = 0, it is
seen that

Ruzo,

Ry = 0.

1t is evident that this condition is the same as that for the termination,
as indeed it should be.
Since P = 0 for any values of 71 and 5,

FaRy + (i3 + )R + (FaRa 2 0, (54)



Sec. 5-12] LOSSLESS JUNCTION 143

It is evident from inspection of the coeflicient of R, in Eq. (54) that the
minimum value of the left side of Eq. (54) occurs when ¢; and 7, have argu-
ments that are the same or that differ by . Then 7,/7;is real, and

.\ 2 .
(%1) R + 2(?) Ry + Ry 2 0. (55)
This condition can be met by requiring that the equation
X2R11 + 2XR12 + Rzg - 0 (56)
has no single real roots. The condition for this is
R}, — RiiRs £ 0. (57)
This can be expressed as
Rll RIZ
= 0.
R Ras| — (58)

The above arguments apply also to the admittance matrix and can be
extended to junctions having more than two pairs of terminals.

An extension of the theorem to junctions with more than two terminal
pairs yields the result that conditions imposed by Eq. (52) require the
determinant of the real part of the impedance or admittance matrix and
the determinant of each of its minors obtained by successively removing
diagonal elements in any order to be greater than or equal to zero.

6-12. The Polyterminal-pair Lossless Junction.—Usually in practical
microwave applications, a junction having more than one pair of terminals
is essentially lossless. This is not always true; but usually, such things
as tuners, T-junctions, and directional couplers have low loss. For this
reason the lossless case is of considerable importance. In Eq. (52), if
P = 0, the equation is purely imaginary for all applied currents 7,.
Consider the special case

1, = 0, for n # k.
It follows from Eq. (52) that
Re (Z) = 0. (59)

That is to say, all the diagonal terms of the impedance matrix are pure
imaginary. Consider now a special case in which all the applied currents
vanish except two, the kth and mth, for example,

1. = 0, for n # k, m.
From Eq. (52),
Re [ixi¥ Zir + (nid + 4i0) Zin + TninZmm] = 0, (60)
and hence
Re (Zin) = 0, for any k and . (61)
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Thus, for a lossless junction, all the terms in the impedance mairix are pure
imaginary. The above conditions apply also, in an analogous way, to
the admittance matrix, and all the terms of the admittance matriz for a
lossless junction are pure tmaginary. It is seen that the statements in
Sec. 54 are special cases of the above.

6-13. Definition of Terminal Voltages and Currents for Waveguides
with More than One Propagating Mode.—The original definition of a
waveguide junction was limited to one excited by transmission lines sup-
porting a single propagating mode. In order to extend this definition to
transmission lines with more than one propagating mode without invali-
dating the previous results, it is natural to impose the condition that
Eq. (30) be valid in the new system and that the resulting impedance
and admittance matrices be symmetrical. Whereas previously it was
necessary to introduce a single voltage and current to describe completely
the conditions in a given transmission line, now it will be necessary to
introduce a voltage and current for each mode in the guide. There is no
unique way of introducing these voltages and currents, but there is one
way that is a little more natural than the others. It isto let each voltage
and current be a description of one particular mode in the transmission
line. To make this more definite, in the derivation of Eq. (30) a surface
integral Eq. (29) is encountered. This is the same surface integral that
oceurs in Eq. (4).

To simplify the discussion, let us consider the junction to be excited
by a single transmission line along which N modes may propagate.
Equation (4) is applicable; but because of the N modes, Eq. (5) must be

generalized to
2 eof 7 (z,y)s

z enfi (2,y),

(62)
H,= 2 g (@),
H, = 2 Tag ().

m Eq. (62), f™(x,y) is a real function of the coordinates which deseribes
the distribution of the z-component of electric field of the nth mode over
the terminals; similar statements apply to the other functions. The
normalizing parameters e, and 7, are so chosen that Eq. (6) is satisfied:

S
I

s
I

/ Umgm — fmgm) dedy = —1, for all n. (63)

It was shown in Sec. 2:18 that the transverse electric and magnetic fields
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for one mode are orthogonal to the transverse magnetic and electric fields,
respectively, of any other mode. By the use of this fact together with
Maxwell’s equations it can be shown that

[ lf;mg:/m _ ;;m)g(zm] dz dy = 0, for n # m. (64)

If Egs. (62) are substituted in Eq. (4) and then Egs. (63) and (64) are
used, Eq. (30) results. In other words, the particular choice of param-
eters e, and 7, introduced in Eq. (62) results in the same connection
[Eq. (30)] between terminal energy quantities that was obtained for
single-mode guides. Thus the terminal-parameter description of a
transmission line with N propagating modes is, at least to this extent,
equivalent to the description of N single-mode guides. It can be seen
in an analogous way that the reciprocity condition is also satisfied and
that the impedance and admittance matrices are symmetrical. Thus all
the preceding results are valid for this case also.

As was pointed out earlier, the currents and voltages introduced in
Eq. (62) are not the only permissible ones. To show this, new currents
and voltages that are linearly related to the currents and voltages of
Kq. (62) may be defined. If i’ and e’ are column vectors representing
the new currents and voltages, then the linear relation may be expressed
as

i = Ti', ]

e = Te’, (65)

where T is a matrix expressing the linear relation.
The left-hand side of Eq. (30) may be expressed in matrix form as

z i*e. = T*e. (66)

n

Here 7 represents the transpose of i;in other words, Tis a row vector:

T= (i, * * ) (67)
TFrom Eq. (65), B
i=1T. (68)

If Eqs. (68) and (65) are substituted in Eq. (66),
i*e = "*T*Te’. (69)

If e’ and i’ are to be a permissible representation of the left-hand side of
Eq. (30), then Eq. (66) must be invariant under the transformation.
The necessary and sufficient condition for this is that

T*T =1, (70)



146 GENERAL MICROWAVE CIRCUIT THEOREMS [SEc. 514
where | is the unit matrix. Equation (70) is equivalent to
T+ =T (71)

A matrix that satisfies Eq. (71) is said to be unitary.

Condition (71) guarantees that the transformed voltages and currents
will satisfy Eq. (30). However, condition (71) is not sufficient to guaran-
tee the symmetry of the impedance and admittance matrices. The
impedance matrix is defined by

e = Zi. (5.34)
The substitution of Eq. (65) in this equation gives
Te’ = ZTV
A @)

In order for T to be a permissible transformation, the matrix T-2ZT must
be symmetrical,

T-ZT = TZT- = 72T (73)
In order for this equation to hold for all Z,
T =T (74

A matrix that satisfies Eq. (74) is said to be orthogonal. Conditions (74)
and (71) lead to the result
T=T*% (75)

To state the results in words: If the terminal currents and voltages
are transformed by a real orthogonal transformation, the resulting
impedance matrix is symmetrical and Eq. (30) is left invariant. Because
all the preceding results stem from the symmetry of the impedance and
admittance matrices and from Eq. (30), it follows that the new set of
currents and voltages are a permissible set.

5-14. Scattering Matrix.—The wave formalism introduced in Sec.
56 can be extended to a junction with many terminal pairs. As in the
previous restricted case the incident wave will be represented by a and
the reflected wave by b.

Let a, be a complex number representing the amplitude and phase of
the transverse electric field of the incident wave at the nth terminal pair.
Let b, be the corresponding measure of the emergent wave. It is assumed
that a. and b, are normalized in such a way that {a*a. is the average
incident power, and correspondingly for b,.

As in Egs. (19) and (20)

en = gnlan + ba), }

. 1 (76)
n = = n b-n s
= (a )

where g, is a constant for that terminal pair.
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The characteristic impedance of the nth guide is connected in a simple
way with g.. To show this connection, let b, = 0; then

€n = Jnln,
) 1
in = g— Ay,
' 77)
€n
VASIES F g3,

gn = VZP.
Thus g. is the square root of the characteristic impedance of the nth
guide.
As can be seen from Eqs. (62) and (63), it is always possible to choose
e, and 7, in such a way as to make Z{ = 1. It will be assumed that this
has been done. Then g, = 1, and

€n = @y + by, -
in = Qn — bn;] (18)
an = g(en + 1a),
by = $ew — 7). ] 79)
If e, is substituted from Eq. (31),
an = '% z (an + 6nm)imy
“ (30)
b, =% E (Zam — am)im,
where
8um = 0, n #Em,
Onm = 1, o= m.
Using the matrix notation, Eq. (80) becomes
a =34+ )i, (81)
b =3Z - 1), (82)

where

la}]

and so forth. Kquation (81) can be solved for i:

i =2(Z 4+ D a. (83)
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If this is substituted in Eq. (82),
b= (Z-DZ+Ia (84)

The matrix connecting a and b in Eq. (84) will be called the scattering
matrix S;

b = Sa, (85)
and
S§=EZ-DhHZ+Nh (86)
It can be shown in an analogous way that
S=({(-Y){+Y)L (87)

The importance of the scattering matrix will become evident when
examples are discussed.

6-156. Symmetry.—The matrix S has several general properties of
importance. One of these is its symmetry. It will be shown that the
transpose of S is equal to S.

To show this, let

Z—-1=¢G,
Z+1=H, (88)
S = GH-L.
1t is evident that
GH = HG. (89)
If Eq. (89) is multiplied on the left and right by H-,
H-'GHH-! = H-'HGH, (90)
H-1G = GH-.
If this result is substituted in Eq. (88),
S = HIG,
and
§ = H'G = GH-' = GH~! = H—'G, (91)
since G and H are symmetrical.
Therefore
S=s5, (92)

and 8 is symmetrical.
6-16. Energy Condition.—Some additional conditions are imposed by
Eq. (30). If Eq. (78) is substituted in Eq. (30), there follows

z (@t — bE)(an + bn) = Wy — Wi) + 2P. (93)

The real and imaginary parts of Eq. (93) are
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z (aka, — b¥b,) = 2P, “hH
z (a¥bn — a.b}) = Yjo(Wu — Wi). (95)
In matrix notation, Eqgs. (94) and (95) become

a*(l — S8*S)a = 2P, (96)
a*(S — S*)a = 4ju(Wy — Wa). 97)
Since P = 0, the same conditions are imposed on (I — S*S) as were

imposed on Re (Z) in Sec. 5:11. These conditions were that
det (I — §*S) = 0, (98)

and the same for each of the principal minors.
The case of a lossless junction deserves special notice. In this case
P = Oforall ain Eq. (96). Thisleads to the result

| = §*§ (99)
or
S-1 = 8%, (100)
Since S is symmetrical, 8* = S* and
S-1 = §x, (101)

Equation (101) is the definition of a unitary matrix. Thus the scattering
matriz is symmetrical and unitary for a lossless junction.

5-17. Transformation of the Scattering Matrix under a Shift in Posi-
tion of the Terminal Reference Planes.—The transformation introduced
in an impedance or admittance matrix by a shift in the reference planes was
discussed in Chap. 4. In the case of the scattering matrix this trans-
formation is almost trivial. This can be seen if it is remembered that the
time required for a wave to enter a junction by way of a transmission
line is increased if the reference plane of that line is moved away from the
junction. Also the time required for a wave to leave the junction is
increased if the phase plane is moved away from the junction.

To put this in quantitative terms, if the terminal (reference) plane of
the kth line is moved out from the junction by a distance I, then the
transformed scattering matrix is

§’ = PSP, (102)
where S is the original scattering matrix and P is a matrix with nonzero
elements on the principal diagonal only, a diagonal matrix. The kth
diagonal element of P is

ot

Pu.=c¢ M (103)

where \; is the wavelength in the Ath transmission line.
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5-18. The T-matrix of a Series of Junctions Connected in Cascade.—
Let a series of two-terminal-pair junctions be connected end to end so
as to form a chain. The problem is to find the scattering matrix for the
chain. The scattering matrix is actually not the most convenient repre-
sentation of the properties of such a cascade of junctions. It is more
convenient to introduce a matrix that relates the conditions at the output
terminals to those at the input terminals. This matrix will be called
the T-matrix.

If
b1 = Suai + Sieae (104)
and
be = Saia1 + Szzllz,
then
by = g;‘:: b1 + (Sl'z - Sf;i”) a (105)
and
as = L by — Su a
S ' Su ¢
This may be written as
g =Th, (106)
where
ba ai
g= [ag], h = [b‘] (107)
and
S12 _ S22S11 —’S_2?
T- 8n Bal (108)
_Su 1
Sgl S12

If the junctions are numbered in the same order in which they occur in
the chain, then

gr = Tihy, (109)
and
0r = higay (110)

where the subscript refers to the number of the junction. If the equa-
tions are combined, it is found that

T, - -+ Tihy = g (111)
However, this implies that the resultant T-matrix for the chain is
T=TaTor - Tu (112)

If desired, the components of T may be used to obtain the scattering
matrix of the chain by the relation
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7‘21 1
Tas Tae
S — 22 22]
1 Ty (13)
T22 TZZ

6-19. The Scattering Matrix of a Junction with a Load Connected to
One of the Transmission Lines.—Let one of the transmission lines (the
kth) of the junction be terminated by a load of reflection coefficient T
referred to the reference terminal of the transmission line. This load
imposes the condition

Fbk = Qg. (114)
But
bk = zlsk,-a,-. (115)
j

Hence, if these expressions are combined,

r ’
= ﬁﬁS—ME S;,,-a,-, (116)

i

ag

where the prime denotes that the %kth term is eliminated in the sum.
Equation (116) can then be substituted in the remainder of the scattering
matrix to eliminate ax. The kth terminal is thus completely eliminated
from the scattering matrix.

FREQUENCY DEPENDENCE OF A LOSSLESS JUNCTION

The energy integrals of the previous sections gave information about
terminal quantities at one frequency. A new energy integral will
now be formulated which relates the rate of change of terminal param-
eters with respect to frequency to the stored energies in a lossless
junction.

6-20. Variational Energy Integral.—Let us consider a junction to
which is connected several transmission lines. Maxwell’s equations
for a lossless junction are

curl H — jweE = 0,

11
curl E 4 jwuH = 0. (117)

Let us now consider a solution of Eq. (117) which satisfies the boundary
conditions of the junction, and let us introduce a variation of the fre-
quency and field quantities consistent with the boundary conditions.
The variations satisfy the equations

curl H — je(wSE 4+ Ebw) = 0,
curl éE + ju(wdH 4+ Héw) = 0. (118)
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If the quantity

div [E X 8H — 3E X H] = [6H - curl 6E — E - curl sH]
— [H:-curl éE — $E-curl H] (119)

is introduced, and if, in the right side of this expression, quantities from
Eqgs. (117) and (118) are substituted, there results

div [E X 6H — 6E X H] = j(uH? — eE?)bc. (120)

If Eq. (120) is integrated over the volume of the junction and the left
side of the equation converted to a surface integral, there results

/ (E X $H — oE X H) - dS = j6w/ (WH? — E2) dv.  (121)
S v

5-21. Application to Impedance and Admittance Matrix.—The left-
hand side of Eq. (121) is an integral over the various terminals of the
waveguide junction and leads to the result

2 (endin — tnben) = jow / (uH? — €E?) dv, (122)

where, as before, 7, and e, are the current and voltage at the nth terminals.
It is to be noted that Eq. (122) relates a variation of the terminal voltages
and currents to an energy integral times a variation in frequency. It
is evident from Sec. 510 that if e, is real for all n, then E is real, H is
imaginary, and ¢, is imaginary. If Eq. (122) be limited to real terminal
voltages, it becomes

2 (endin — inden) = —jéw/ (uH* - H + E*-E) dv

= —4jéw(Wy + Wu), (123)
when e, is real, independently of n. If the variation of Eq. (31) is taken
ben = z (Zam8im + 8Z pmim). (124)

1f this and Eq. (31) are substituted in Eq. (123), since 1% = —i,,
z 138 amim = 4780(Wr + W), (125)

n,m

where, as before, Wr and Wax are the average electric and magnetic
energies. The impedance elements Z,,, are functions of frequency only,

and if
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6Z,.,,, _ dznm

o do Zims
2 B2, im = (W + Wa). (126)
Similarly, from Eq. (35),
z erYimen = 4j(We + Wa). (127)

n,m

Equations (126) and (127) are the starting point of the discussion of the
frequency dependence of impedance and admittance matrices.
In matrix notation, Eqs. (126) and (127) become

i*2'i = 4W, (128)

8*Y'e = 45W, (129)

where W is the total stored energy corresponding to the particular ter-

minal conditions. In Eqgs. (128) and (129) it is necessary that all the
terminal voltages have the same phase angle.

Since W > 0, the conditions that are imposed on the reactance
matrix and the susceptance matrix by Eqgs. (128) and (129) are identical
with the conditions imposed on the real part of the impedance matrix
by Eq. (52).

In order for Eq. (128) or (126) to be satisfied for any pure real cur-
rents im,

det (X7.,.) = 0.

Also, all the principal minors must be greater than zero. \
5-22. Application to Scattering Matrix.—If Eq. (78) is substituted in
Eq. (122), there results

2 z (bn 80n — @y 8bs) = j(eE? — pH?) bw. (130)

If E? has the phase angle 8 throughout the junction, then, as above,. H?
will have the phase angle 8 + =, and

2 2 (ba 8as — @, 8b,) = je'#(eE* - E + pH* - H) fo. (131)

In matrix notation _
2(bda — asb) = 4jefW dw, (132)

where, as above, W is the total stored energy. Since E? has the phasé
angle 8, e, has, except for a possible change in sign, a phase angle 8/2 for
all n. Also ¢, has a phase angle (3/2) + (v/2).
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Therefore,
—8
e 2o (133)
is pure real and
-8
e 2j
is pure imaginary.
From Egs. (78) and (85),
e = (1 + 9)a,
i = (1 - S)a, (134)
where S is the scattering matrix.
From Eqgs. (133) and (134),
% S 5 | 4+ S*)a*
e 2(1+9S)a=¢e(l4+S*a
_i i8 ' (135)
e 2(1 —Sa=—e2(l —S%a*,
From Eq. (135),
a = e8S*a*, (136)
Equation (136) is the condition that a must satisfy in order that
arg E? = 8.
If Eq. (85) is substituted in Eq. (132),
~34(8S)a = je?(We + Whg) dw. (137)
Let
, _ dS
8 = do (138)
Then if Egs. (138) and (136) are substituted in Eq. (137),
3ja*S*S'a = W. (139)

Equations (139) and (136) are the starting point for the investigation of
the frequency dependence of the scattering matrix of a general junction.

6-23. Transmission-line Termination.—Consider a lossless termina-
tion of a single transmission line. The matrix equations [Eqgs. (128) and
(129)] reduce to the scalar equations

7 -2 (140)
3171
and
. W
’ — P—
vi=2 7 (141)

Stated in words, the rate of change of reactance with frequency is always
positive and is equal to four times the stored energy divided by the square
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of the magnitude of the current. A similar statement holds for the

susceptance.
The matrix equation [Eq. (139)] reduces to the scalar equation
. w
* ! = ——
JS*S Ta%a (142)

Equation (136) is satisfied for any a. Since the termination is lossless,
S = &', (143)

Also ia*a is the incident power P. If Eq. (143) is substituted in Eq.
(142),
_dv

w
=+ (144)

where — ¢ is the phase delay in the wave after reflection. Equation (144)
states that the electrical line length into the termination and out again
always increases with frequency, and the rate of increase is equal to the
stored energy per unit incident power.

The physical significance of Eq. (144) is rather interesting. If a
pulse, represented by

g(t) = /a(w)e"‘” dw, (145)

is introduced at the terminals, then some time later a pulse will be
reflected out of the termination. This pulse will have the form

h(t) = / blw)ei! de, (146)

where

b(w) = S(w)a(w). (147)

If the pulse contains only a small band of frequencies, it is not distorted
by the termination and there is the relation

R(f) = gt — 1), (148)

where 7 is the delay introduced by the termination. From the combina-
tion of Eqgs. (145), (146), and (148), there results

a(w)e " = b(w). (149)
From this and Eq. (147), it is seen that
S(w) = e, (150)

Tquation (150) is, of course, valid only over the small range of fre-
quencies included in the pulse.
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If Eq. (150) is compared with Eq. (144),

T = %7 (151)

Equation (151) states that the time required for a pulse of energy to
enter the termination and leave-again is just the average stored energy
per unit incident c-w power.

6-24. Foster’s Reactance Theorem.—From Eqs. (140) and (141),

Wse+ WH,

X =200 (152)
p =Wt Wu (153)
BE€

If W = We + Wy vanishes, E and H vanish throughout the termination
including the terminals. Hence X’ and B’ must always be greater than
zero for a positive W.

If it is assumed that X has a zero at w = w,, then X can be expanded
in a power series about w

X = al(w - wo) + ag(w - w0)2 + o, (154)
This expansion is valid in the neighborhood of w,, and hence
X' = a1+ 2a2(w — wo) + -+ - . (155)

From £q. (152), X’ > 0; therefore, a; > 0.
Since a; > 0, for » nearly equal to w,, the first term in Eq. (154) is the
dominant term, and in this region

B =~ = 0 (156)

Thus if X (w) has a zero at a certain frequency, B(w) has a simple pole with
a negative residue at the same point. Conversely a zero in B(w) leads to
a simple pole in X ().

From Egs. (13) and (14),

Wu— W
X = 2 _H%T‘il’ (157)
B =9 We= W (158)
ge e

1t is evident from Eq. (157) that for w = 0, X = 0 unless the stored elec-
tric or magnetic energy becomes divergent for a given finite current.
If the stored energy becomes infinite, from Eq. (152) w = 0 is a singular
point. If thissingular point is a pole, it is clear from the foregoing discus-
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sion that the pole is simple and has a negative residue. In this case
B(0) = 0. Thus, at w = 0, either X(w) or B(w) has a zero.

Let it be assumed for the present that X(w) has a zero at w = (.
Remembering that X (v) = — X(—w),

X = blw + b;;wa + bsb)s + et (159)

This expansion is valid for |w| < |wi|, where w; is the location of the first
pole.! Since this pole must be simple and must have a negative residue,
its principal part is

Vi

W — W)

, (160)

where V; is positive.
In order for X to be odd, however, there must be a singularity at

w = —wy. If the principal parts of both these singularities are sub-
tracted from X, the remainder of the function is regular at the points
w — w; and v = —w; and can be expanded in a power series that is valid

for |o| < |ws| where w, is the next singularity.
If there are only a finite number of poles, this process can be continued
until the power-series expansion is valid for all finite frequencies. Then

X(w) = -—ET,.(w_lwﬂ—i-wiw")-l-alw—%agw“-}— - e (161

If the termination is a network composed of a finite number of imped-
ance elements, then the power series in Eq. (161) can have only a finite
number of terms, and X(w) may have at most a pole at infinity. All
poles, however, must be simple with a positive residue. Therefore, all
terms in the power series after the first are zero. If these terms are set
equal to zero, there finally results

X(w) = —2 2 T ﬁ + aw. (162)

In the above development it was assumed that there were a finite
number of poles. This is true only for networks composed of lumped
impedance elements. A distributed system has an infinite number of
poles which form a condensation at the point at infinity. In this case
the sum in Eq. (162) is taken over all poles up to m. Equation (162) is
then a good approximation in the range jw| < |wn|.

It is to be noted that the last term in Eq. (162) is the reactance of an

! An essential singularity causes a function to behave very wildly in its vicinity.
It is unreasonable to expect a function representing a physical quantity to have an
essential singularity in the finite plane. It will be assumed that all singularities in the

finite plane of a reactance or susceptance function are poles. It will he shown later
that all poles must lie on the imaginary impedance axis.
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inductance. If there is a nonvanishing ry, for we = 0, then this term
represents a capacitor. Also the nth term in the sum is the reactance
of a shunt combination of an inductor and a capacitor whose resonant
frequency is w, and whose capacitance is 1/2r,. It is evident that the
reactance function given in Eq. (162) can be synthesized by the circuit
in Fig. 54.

~o0— 111 ]

Fre. 54.—Synthesis of a termination by Fig. 5-5.—Synthesis of a termination by
shunt-tuned elements. series-tuned elements.

As was pointed out above, an expression of the same form as Eq.
(162) can be obtained for the susceptance function. It can be synthe-
sized by the circuit of Fig. 5-5. It is clear that a circuit of either of these
two types can be used to synthesize any lossless termination, provided
the frequency is not too high.

It has been assumed that poles of the reactance or susceptance func-
tion lie only on the real axis in the complex w-plane. This will now be
proved. Assume that there are poles lying on the real axis as well as
poles that are not on the real axis. The poles on the real axis can be
removed by a circuit of either of the types shown in Figs. 5-4 and 5-5.
That part of the circuit which remains within the termination is assumed
to consist at most of poles not lying on the real frequency axis. Such
poles have zero susceptance at infinity. Also the susceptance is a con-
tinuous function along the real axis, since there are no singularities on
the real axis. Since the susceptance of the termination in Fig. 55 is
a continuous function of frequency vanishing at + « and must have a
zero or positive slope, it must vanish everywhere. Thus all poles of a
reactance or susceptance function must lie on the real frequency axis.

6-26. Frequency Variation of a Lossless Junction with Two Trans-
mission Lines.—If a two-transmission-line junction is matched, the
seattering matrix is

0 1
S=[1 0]. (163)

In order to simplify the discussion, the terminals have been located in the
transmission line at such a position that S;; = 1. This represents no
important restriction.

In general none of the elements of S’ vanish, but 8’ must satisfy Eq.
(139), where a satisfies Eq. (136). Tet
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1
a; = \/§ 1 3
(1
dg = '\/2 J H
. (164)
dz = \/E -1l
(1
a4 = \/2 _j .

These four column vectors satisfy Eq. (136), as can be seen by inspection.
Let W, be the average stored energy in the junction corresponding to
ag.

If a, is substituted in Eq. (139),

. 01 1
J(L1) [1 0] s’ [1] = W, (165)
This reduces to
j(S/n + 2S’12 + S;2) =Wy (166)
where
Sl !
s = [ . ,”]. (167)
12 22

In a similar way the remainder of the a’s may be substituted in Eq. (139)
to yield
_(S’u + 2jS/12 - Slzz) = W,
_j(‘g'11 - 28/12 + SIZ‘Z) W, (168)
(S,u - 2jSl12 - Slzz) W,

If the column vectors,

a; =

1
2z
a, = 3

(a, + as) = z(a: + aq),
(81 — a3) = —zj(a: — a), (169)

are formed for which

R
|

)

(170)
2= /2 [0]

1

then a; and a; represent waves incident in one line only. They differ
only in the direction of transit through the junction. Hence the stored
energies are equal for a; and aj.  Let this stored energy be W. It should
be noted that

a = aj + (j)"as (171)

Thus each of the colwnn vectors of Eq. (164) can be represented as a
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linear combination of the vectors of Eq. (170). If the electric and mag-
netic fields in the junction corresponding to the incident waves a; and
a; are denoted by the subscripts 1 and 2 respectively, then

W= %/ (wHH, + eE1E,) dv = %/ (uHSH, + eE%E,) dv. (172)
Also
W= [ IO+ R + o
+ (BN + JFEY (Ey + 7By dv. (173)
W, = 2W 4 Re (j*7'4), (174)

Thus
where

A = / (uHAH, + eE*E,) dv. (175)

It is important to note that
4] = 2W. (176)

From Fgs. (166) and (168),
Wi+ Wy = W, + IV, = 458, (177)

From Egs. (174) and (177),
S, = W. (178)
Since aj and aj represent 1 watt of power incident on the junction, Eq.

(178) may be generalized to
w

S =5 (179)
where P is the power flowing through the junction.
Let
Sis = ¢7%.
For ¢ = 0, Eq. (179) may be written as
, W
¢ =-% (180)

It will be noted that this expression is completely equivalent to kq. (144).
The discussion following Eq. (144) is also applicable to Eq. (180). In
particular, the delay T introduced by a matched delay line is, in seconds,

W
T=% (181)

From Egs. (166) and (168),

N Sy = (0 — W, (182)
Sty = Sy = 3V, — W), (183)
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From Eqs. (182) and (183),

= —8%, (184)
= (W — Wa) + (W, — W) (185)

From Eq. (174),

8y = — 3j[Re (4) — j Re (j4)]
= — 5jA. (186)
From Eqgs. (176) and (184),
/ . w .
|S11| = |S221 = P = l 12]- (187)

Equation (187) expresses important restrictions on the frequency sensi-
tivity of the phase shift through the junction and of the match at each
terminal.

To illustrate the significance of Eq. (187), a waveguide junction may
be considered that may be represented by the simple equivalent circuit
of a shunt inductance and a shunt capacitance at resonance, in a trans-
mission line of unit characteristic impedance. Then

o€ —
Su=7J = Sas. (188)
At the resonant frequency,
Su = 0, }
=0 189
= JC. (189)

The value of W/P is C, and therefore the equal sign in Eq. (187) holds.
A simple shunt-tuned circuit thus has the maximum value of frequency
sensitivity.



CHAPTER 6
WAVEGUIDE CIRCUIT ELEMENTS

By C. G. MONTGOMERY

In preceding chapters the normal modes of propagation along a con-
tinuous waveguide have been described and the production of reflected
waves by a discontinuity has been discussed. It was shown that the low-
frequency transmission-line formulas were valid to describe the propaga-
tion of the effects of the discontinuity along the waveguide. In Chap. 5
general theorems were developed that formed extensions of the low-
frequency network theorems to waveguide transmission lines. In the
present chapter particular examples of discontinuities will be discussed
and these general theorems applied.

6-1. Obstacles in a Waveguide.—One of the most common forms of
discontinuity used in waveguide circuits is a metallic partition extending
partially across the guide in a plane perpendicular to the axis. The
thickness of the partition is usually small compared with a wavelength,
but the effects of the thickness cannot always be neglected. The opening
in the partition may be of any shape. Such a partition is called a dia-
phragm or an iris. In the neighborhood of the iris higher-mode fields
are set up when a wave is incident, so that the total field satisfies the proper
boundary conditions. A dominant-mode wave is reflected from the iris,
and some of the incident power is transmitted through the opening.
Consider first that the waveguide to which the power is transmitted is
infinite in length or is terminated in a reflectionless absorber. The iris
and the reflectionless termination may now be considered together to be
some impedance or reactance terminating the transmission line.. Equa-
tions (5-13) and (5-14) give the values of this impedance or admittance in
terms of the stored electric and magnetic energies Wy and W, and the
dissipated power P. If the losses in the metal diaphragm are negligible,
as is usually the case, power is dissipated only in the absorbing load.
Thus the metal diaphragm is responsible for the imaginary part of the
impedance or the reactance, and the magnitude of the imaginary part
is proportional to the difference between the stored electric and magnetic
energies in the neighborhood of the iris. In the waveguide far from the
iris, the stored electric and magnetic energies are equal as shown in
Sec. 2-18.

Irises are classified according to the sign of the imaginary part of the

162
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impedance to conform to the terminology of low-frequency networks.
Thus an iris that contributes a negative imaginary term to the admittance
is called inductive; one that contributes a negative imaginary part to
the impedance is called capacitive. It should be noted that this classifi-
cation depends only upon the sign and not upon the frequency variation
of the reactance or susceptance.

THIN DIAPHRAGMS AS SHUNT REACTANCES

6-2. Shunt Reactances.—Since a metal diaphragm in a waveguide
may be considered as a junction with two emergent transmission lines, a
proper equivalent-circuit representation would be that of a two-terminal-
pair network at low frequencies, for example, a T- or Il-network. If
the metal diaphragm is sufficiently thin, the series elements vanish and
the circuit representation reduces to that of a simple shunt element.
“This is most easily demonstrated by the argument already used in con-
nection with the bisection theorem (Sec. 4-7). If equal and opposite
electric fields are applied to either side of the diaphragm, then the electric
field in the plane of the diaphragm must be zero. The short-circuit
impedance of half of the network Z., is therefore zero; Z,; = Z;,; and
the series elements of the T-representation vanish. The open-circuit
impedance Z.n of half the network is just twice the impedance of the
shunt element or twice the shunt impedance of the diaphragm. In most
cases, the susceptance of the diaphragm is a more useful quantity and is
usually the parameter specified. From Eq. (5-14) the susceptance B

may be written as
- 2w(Wg - WH).

Zee*

B 1)

To find the value of the susceptance B it is necessary to solve an
electromagnetic problem for the geometrical configuration under con-
sideration. A discussion of the solution of problems of this nature will
not be given here. It may be noted, however, that a complete solution
giving the electric and magnetic fields at every point is not necessary,
since the susceptance depends only on the total stored electric and mag-
netic energy. Variational methods! are found to be very powerful tools
for the solutions of such problems.

Since the characteristic impedance of a waveguide can be defined only
as a quantity proportional to the ratio of the transverse electric and
magnetic fields, the absolute value must remain arbitrary. In a similar
manner the absolute value of the susceptance of an iris is undefined by
an unknown factor of proportionality. It is customary therefore always
to express the susceptance of an iris relative. to the characteristic imped-

1 David 8. Saxon, “Notes on Lectures by Julian Schwinger: Discontinuities in
Waveguides,” February 1945.
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ance of the waveguide. The relative susceptance is then a definite
‘quantity. It has been shown in Chap. 3 that relative admittances or
impedances are all that are necessary for most problems in waveguide
circuits; the absolute values are not important.

From a consideration of the special cases about to be discussed, it will
be evident that the frequency variation of the susceptance of a diaphragm
in waveguide is different from the variation with frequency of the sus-
ceptance of a coil or a condenser. ~ Even the simplest diaphragms have a
complicated dependence of susceptance on wavelength or frequency.
This fact arises from two circumstances. (1) The absolute value of the
susceptance must depend on the frequency variations of contributions

y
2 . .
L 4 —
- .
(a) ®) (0

Fia. 6-1.—Induective slits in rectangular waveguide. The metal partitions are shaded
(a) A symmetrical opening, (b) an unsymmetrical slit, and (¢) the partition on one side
only, zo = d/2.

=g

from many higher modes, each of which differs from the others. (2)
The relative susceptance contains the frequency variation of the charac-
teristic admittance of the waveguide. The characteristic admittance is
proportional to the wave admittance of the guide and therefore contains
the factor \/A,. Thus if an absolute inductive susceptance contained the
factor 1/w or A, as the susceptance of a coil of wire at low frequencies,
the relative susceptance would be proportional to A,. A capacitance
independent of A in absolute value yields a relative susceptance propor-
tional to A,/A%. However, since Foster’s theorem remains valid for wave-
guide terminations, no radical departures from the accustomed frequency
variation are to be expected.

6-3. The Inductive Slit.—If, in rectangular waveguide capable of
propagating the dominant mode only, a thin metal partition is inserted
in such a way that the edge of the partition is parallel to the electric field,
the irisformed is equivalent to ashuntinductance. Theirismay beformed
symmetrically as in Fig. 6-1a, or the slit may be asymmetrically placed
as in Fig. 6:1b and ¢. Since the electric field is in the y-direction, the
higher modes excited by the diaphragm are all H-modes and the stored
energy is therefore predominantly magnetic. According to Eq. (5:14)
the shunt susceptance is negative, and the diaphragm is a shunt induct-
ance. The value of the susceptance has been accurately calculated and
the exact formula may be found in Waveguide Handbook, Vol. 10 of this
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series. An approximate expression for the symmetrical case (Fig. 6-1a)

is
B~-2‘- tz”d+f() @)

where f(a/\) is a small term. Equation (2) gives the susceptance relative
to the characteristic admittance of the waveguide. The principal term
is proportional to A,, and hence the susceptance has very nearly the fre-
quency dependence of the suscept-
ance of a coil of wire at low fre-
quencies. The correction term f
is, however, not proportional to A, 20
but has a different frequency de-

pendence. The magnitude of f

25

and its variation with frequency -g 13 4

are illustrated by Fig. 62. At /

large values of A, f can be neg- 10

lected ; when A, is small, the correc- ’

tion term contributes appreciably.

The short vertical lines indicate 05 | / l

the values of \,/a for which the 05 Hy, 10 Ha hl's 20 25
He- and the Hjp-modes may first %z

propagate. Since the slit is sym- Fra. 6-2.—The variation of susceptance of

. . an inductive slit of width d = a/2. The
metrical, the Ha-mode is not straight line with a slope ot unity is the

excited by it. For wavelengths cotangent term in Eq. (2); the curve gives
short enough for the Hy-mode to  the exact value of 5.

propagate, the slit no longer behaves as a simple shunt element but
excites some of the Hi-mode.

The susceptances of the asymmetrical cases of Fig. 6-1b and ¢ may also
be expressed to a good approximation by simple formulas. The suscept-
ance of the diaphragm of Fig. 6-1b is given by

B = — % cot? ;Z (1 + sec? 5?1 cot? W;“) 3)
When one-half of the partition is absent, as in Fig. 6-1¢, zo = d/2, and
Eq. (3) reduces to

X, d ,
B~——Ect2<l+0502a) @)

The expressions given in Egs. (3) and (4) are not so exact as the corre-
sponding approximation for the symmetrical slit. Asymmetrical dia-
phragms excite the Hi-mode and other even modes as well as the
Hgsr-mode and the other odd modes. The correction terms to be added
are therefore larger and the frequency dependence corvespondingly greatev
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than for the symmetrical case. For practical applications the diaphragm
of Fig. 6-1cis often used, since it is the 51mplest possible construction.

The approximate formulas just stated and the exact eurve shown in
Fig. 6-2 are all valid only for a metal partition that is infinitely thin.
It is usually necessary to use metal thick enough so that some correction
is needed. Although the theoretical correction has not been worked out,
an empirical correction has been found that is fairly exact. If the value
of d of the thick slit is reduced by the thickness ¢, the value of B isincreased
to compensate for the thickness effect; thus

Bthick(d) = Bthin(d - t). (5)

6-4. The Capacitive Diaphragm.—If metal partitions are introduced
from the broad faces of a rectangular waveguide so that the edges of the

Y

s

(@) ®
F1g. 6-3.—Capacitive diaphragms in rectangular waveguide. The metal partitions are
shown shaded.

g

partitions are perpendicular to the electric field, then a capacitive sus-
ceptance is produced. Such diaphragms are shown in Fig. 6:3. These
discontinuities excite only higher E-modes; the stored electric energy
exceeds the magnetic energy, and B of Eq. (1) is positive. The suscept-~
ance for these diaphragms has also been calculated and is given by

B = %\b In ese 2(5 (6)
for the symmetrical opening of Fig. 6:3a. Correction terms that are
important at high frequencies are omitted from Eq. (6). The frequency
variation of B is similar to that of the susceptance of a condenser at low
frequencies except that )\, is substituted for A. It does not have the
frequency variation of the relative susceptance of a lumped capacitance,
which would be proportional to A;/A\% as mentioned in Sec. 6-2. The
importance of the high-frequency correction terms to Eq. (6) may be
judged from Fig. 6-4 in which the susceptance of a diaphragm is plotted
as a function of b/\, for an opening d = b/2. The straight line represents
Eq. (6); the accurate value of the susceptance is given by the curve. It
should be remembered that the dimensions of the waveguide are usually
chosen so that b/}, is about
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The E-modes excited by the symmetrical slit will have longitudinal
fields E, which are odd about the center of the slit. The next mode will
therefore propagate in the waveguide when A\, = 4. Since E, is zero
along the plane passing through the center of the slit, a sheet of metal of
zero thickness may be placed along the center of the waveguide and the
fields will not be disturbed.! The waveguide is then divided into halves,
each half containing an asymmetrical slit like the one shown in Fig. 6-3b.
The height of each half has be-
come b/2, and the aperture of the
slit has become d/2. The relative
susceptance must, however, re-
main unaltered. Since the sus-
ceptance must be a function of
the parameters d/b and b/)\,, the 3
value of B for the asymmetrical
slit can be obtained from Eq. (6)
by replacing A, by A,/2. Hence 2

8b nd
B = Eln CSC 5y ¢ (M) //
The capacitive slit is not often //

used in high-power microwave ap-
plications, since the breakdown 0 0.2 04 06 08 10
strength of the waveguide is great- b/)‘a

ly reduced by it. The effect of a F1G. 6-4.—Relative susceptance of a thin
finite thickness of the partition is symmetrical capacitive slit with an opening
much larger than for the induc- Syt omeball he beigbtof e wavesnide
tive slit and will be discussed in a  curve shows the values calculated from the
following section. accurate expression.

6-6. The Thin Inductive Wire.—A thin wire extending across a rec-
tangular waveguide between the center lines of the two broad faces of
the guide forms an obstacle that acts as a shunt inductance. If the
radius of the wire is small and the resistivity large, the skin depth in
the wire may be made comparable with the radius of the wire. The rela-
tive impedance of the wire then contains a resistive component, and power
is absorbed in heating the wire. Such a device forms a bolometer element
and is commonly used to measure microwave power. The relative
impedance of the wire is given by

_ —_— a . a . 2a
Z—R+]X—)\”—;— +]2)\”1n7@_, (8)
27r¢7'\/—7‘2

€
1 See Sec. 2-5.
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where r is the radius of the wire, o is the conductivity, and e is the base
of natural logarithms. The d-c resistance R, of the wire is given by

b

s (9)

0=

The relative impedance may therefore be written as

1 b fu 2a

_2bN, u
Zo—;-)\— \E (11)

Thus if the characteristic impedance of the waveguide is chosen to be
that given by Eq. (11), the relative resistance of the wire is just Ry/Z,.
The reactance, moreover, corresponds to an absolute inductance L per
unit length of

Z

where

L=2L,m2

o (12)

wetr
which is similar to the inductance L, per unit length of a straight wire in
free space:

1 2l

L0=—ylner-

o (13)

This circumstance strengthens the belief by some that the most reason-

able choice for the characteristic impedance of a waveguide is that given

by Eq. (11). It will be recognized that this impedance is the proper

value to choose in order to obtain the correct value of the power flow W
from the expression

1V

W = 377

where the voltage V is defined in the natural manner as
V = bE,.

It has been repeatedly emphasized, however, that any choice of the
absolute value of Z, for a waveguide must be an arbitrary one. Choices
other than that of Eq. (11) are more suitable for other situations.

6-6. Capacitive Tuning Screw.—A metallic post of small diameter
introduced from the broad side of a rectangular waveguide but not
extending completely across the guide forms a shunt capacitance. A
variable susceptance of this type can be made by simply inserting a
screw into the waveguide, and such a tuning screw is often employ.) in
low-power microwave equipment. Currents flow from the broad face
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of the waveguide down the screw, and consequently it is necessary that
good electrical contact be made between the screw and the guide. As
the screw is inserted, the capacitive susceptance increases in very much
the same manner as does the susceptance of a condenser whose plates ar éf?‘
the top and bottom walls of the waveguide. ()
For small distances of insertion, the screw should behave much as a. 4
lumped capacitance, and the relative susceptance should vary as \,/a2{
As the distance of insertion increases, however, and becomes an apprecl-i )
able fraction of a wavelength, the currents flowing along the length of , (\ )
the post are no longer constant ()
P
3
»

and the screw acts as an induct- 5 /

ance and a capacitance in series 4

shunted across the waveguide 3 / L
transmission line. When the 2 7/ e 1
length of the screw is approxi- 1 // g 3
mately one-quarter of a freespace B 0 ¢ 'y
wavelength, resonance occurs and e - |
the susceptance of the screw be- : ;
comes infinite. With still greater ~ ~2 j ey
distance of insertion, the suscept- 3 < 3
ance becomes negative; and when -4 T A ( “)
contact with the opposite wallis -5 N , o
made, the susceptance becomes 0 02 0.41 A 06 08 1'9 : j
that given approximately by the / i
inverse of Eq (8) No adequa‘te screr‘vXG(i.Of;g.;.Ti}:xe dsi::s:f:fl;:eaogu:céz?lmogf

theoretical treatment has been the depth of insertion in waveguide 0.9 by
. . 0.4 in. ID at a wavelength of 3.2 em.

given of the susceptance of tuning

screws, but the behavior just described is illustrated by the experi-

mental data of Fig. 6-5. The dimensions of the screw and the equiv-

alent circuit are indicated in the figure. The value of B for I/b = 1.0

calculated from Eq. (8) is —3.45.

No data exist on the frequency sensitivity of the susceptance. In
the neighborhood of resonance, the susceptance seems to depend critically
on the dimensions and on the frequency. The resonant length of the
screw of Fig. 6:5 appears to be about 0.75b. One-quarter of-a free-space
wavelength is 0.79b.

Other resonant structures that totally reflect the incident power
exist in many forms. A common oneis a rectangular ring, the perimeter
of which must be about 1.1X for resonance to occur; a dumbbell-shaped
antenna is another. No extensive investigations have been made of the
properties of such structures.

6-7. Resonant Irises.—Since both capacitive and inductive dia-
phragms exist, it should be possible to combine them and obtain a shunt-
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resonant circuit such as that of Fig. 6-6. No theoretical treatment of the
properties of such a diaphragm has been made. It has been found
empirically that for resonance the dimensions a’, b’ of the rectangular
opening are given by

e RNy S

If the origin of rectangular coordinates is taken at the center of the wave-
guide, then Eq. (14) is the equation of an hyperbola in the variables a’
and b’. The hyperbola passes through the corners of the waveguide,
and the branches are separated by A/2 at the closest point. Equation

1 Lot
A
bl av—Z_ v
7
a
(@) ()]
Fia. 6:6.—(a) Equivalent circuit of a shunt-resonant thin diaphragm; (b) resonant dia-

phragm.

(14) is obtained if the characteristic impedance of a waveguide of dimen-
sions a and b given by Eq. (11) is equated to that of a guide of dimensions
a’ and &’. This condition cannot be derived rigorously, but qualitative
arguments that make it appear reasonable have been given by Slater.!
Equation (14) fits the experimental data very well for apertures in metal
walls that are thin compared with the dimension b’. An increase in the
thickness of the partition decreases the resonant wavelength.

A resonant circuit such as that of Fig. 6-6 has a frequency sensitivity
characterized by the parameter @. Asshown in Sec. 4-13, near resonance
the admittance of the combination of the resonant aperture and the
matched load is given by

A
Y=1+2]Q;‘:-:;

where wp is the resonant angular frequency and Aw is the deviation from
the resonant value. The Q-values for resonant apertures are low, of
the order of magnitude of 10, and increase as b’ decreases. This is to be
expected, since a decrease in b’ increases the capacitive susceptance Be.
Another commonly used resonant aperture is obtained by combining
a symmetrical inductive diaphragm and a capacitive tuning screw. The
resonant frequency may be conveniently changed by means of the screw,
and the Q altered by changing the aperture of the diaphragm. Such

1]J. C. Slater, Microwave Transmission, McGraw-Hill, New York, 1942, pp. 184f.
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resonant devices have been employed in the construction of filters.!

A variable susceptance of this type
is used in waveguide crystal mix-
ers.? Considerable experimental
information about resonant irises
of this and other kinds is to be found
in Chap. 3 of Vol. 14 of this series,
where the use of several such cir-
cuits in cascade to make a TR
switch with a band-pass character-
istic is described.

6-8. Diaphragmsin Waveguides
of Other Cross Sections.—Al-
though only rectangular waveguide
has been discussed, diaphragms in
waveguides of other cross sections
also act as shunt susceptances, pro-
vided that the metal partitions are
thin and that the waveguide is cap-
able of supporting only one mode.
In round waveguide carrying the
TE;-mode, a centered circular ap-
erture is a shunt inductive suscept-
ance.
the waveguide axis.

1
(DO

18

16

12

I8/ /
8

0
0 2 4 6
dincm
F1c. 6-7.—Susceptance of inductive
apertures (Curve A) and capacitive disks
(Curve B) in round waveguide of 2.5-in.
inside diameter at a wavelength of 9.1 cm,
TEu-mode.

A capacitive susceptance is formed if a circular disk is centered on
In Fig. 6-7 some rather old experimental data are pre-

@
DO

F1g. 6-8.—Resonant obstacles and apertures in waveguide of circular cross section.

The obstacles are totally reflecting at resonance; the apertures totally transmitting.

metallic portions are shaded.

The

sented to illustrate the variation of the susceptance with the diameter of the
apertureordisk. Notheoretical estimates of the susceptance are available.

! Microwave Transmission Circuits, Vol. 9, Chap. 10, Radiation Laboratory Series.
* Microwave Mizers, Vol. 16, Radiation Laboratory Series.
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There exist also both series-resonant obstacles that are totally reflecting and
shunt-resonant apertures. A group of these is shown in Fig. 6-8. In
the use of diaphragms in waveguide of circular cross section it must be
remembered that modes of two polarizations can exist (Sec. 2-13) and
the diaphragm must be symmetrical with respect to the electric field so
that the second polarization will not be excited.

A close correspondence exists between a capacitive slit in rectangular
waveguide and a slit in a parallel-plate transmission line. In rectangular
waveguide the z-dependence of the fields, both near the obstacle and far
from it, is determined by the z-dependence of the incident field ; in particu-
lar E, is zero, and E,, E, and H vary as sin 7z/a. Each component of
the electric field satisfies the wave equation; for example,

d*E,

a2 T 9yt + azzv+k2E =0

where k = 2r/\ is the wave number in free space. The z-derivative can,
however, be evaluated, and the equation becomes

6 E' T\’
62‘2 ‘4 [ <E> ]Ey =0, (15)

and similar equations hold for the other components. In a parallel-plate
transmission line also, E, is zero and the other components satisfy the
wave equation; thus,
’E, E,
day? + 922

Since the boundary conditions are independent of z for a capacitive
obstacle, the solutions of Eqs. (15) and (16) differ only in that where %
occurs in a parallel-plate solution k% — (m/a)? occurs in the waveguide
solution  Consequently, one result may be derived from the other by
replacing k? — (m/a)? with k? or equivalently by replacing A, with A,
Thus the susceptance of a symmetrical eapacitive slit in a parallel-plate
transmission line follows immediately from Eq. (6) and is

_ wd
B = ln ese - an

+ k°E, = 0. (16)

A coaxial transmission line with a thin disk on either the inner or the
outer conductor behaves very similarly to a parallel-plate transmission
line with a capacitive slit. Accurate values of the susceptance for
capacitive disks are to be found in Waveguide Handbook. Some values
calculated in a. different manner have been given by Whinnery and
others.! A wire extending from the inner to the outer conductor of a

1J. R. Whinnery and H. W. Jamieson, Proc. IRE, 32, 98 (1944); J. R. Whinnery,
H. W. Jamieson, and T. E. Robbins, Proc. IRE, 32, 695 (1944).
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coaxial line forms an inductive susceptance. Although no measurements
or calculations are available for this case, an approximate value of the
shunt admittance can be found from Eq. (8) if A, is replaced by X and a
replaced by the mean circumference of the coaxial line.

6-9. The Interaction between Two Diaphragms.—When a wave is
incident upon a diaphragm, the field near the diaphragm consists of the
dominant-mode wave together with enough higher-mode waves to satisfy
the boundary conditions at the aperture. The intensities of the higher-
mode waves fall off in both directions away from the aperture, and at a
sufficient distance only the dominant wave is left. The simple equiva-
lent-circeuit picture gives a valid description of the fields only at distances
large enough for the higher-mode waves to be neglected. The effective
range of the higher-mode fields thus depends on the attenuation constants
of these higher modes and on the amplitude of their excitation. The
attenuation constants are given by

Ly 1\
a=2r \/<)Tr> - (i) ) (18)
which is independent of N if A >> A\,. The range of interaction is thus
about 1/a or A./2r. For an asymmetrical inductive slit the range is
therefore a/2x; for a symmetrical inductive slit the range is a/3r; for a
symmetrical capacitive slit, b/2x.

If two thin apertures are separated along the waveguide by a distance
comparable to the range, there will be an interaction between them that
is not given by the simple equivalent-circuit picture. The magnitude of
this interaction can be judged from some calculations of Frank.! Frank
considered the case of two symmetrical inductive slits. The effect of
interaction can be expressed in terms of the ‘“‘effective’” admittance of
the diaphragm nearest the load. The effective admittance is the admit-
tance that the diaphragm would have to have in order that the admit-
tance of the combination of the two diaphragms and the load could be
correctly caleulated if no interaction were assumed. If s is the distance
between the windows, the effective admittance is given by

_3ms
Y, = jB; — 6; —Bém - B; e @ Y.sin %)’LS
[ v g
L+ B 1+MBZ
—j{ B2 sin 2ns + cos % o (19)
A A

where — B; and — B, are the susceptances of the two windows and Y is
the admittance of the load at the second window. The magnitude and

!N, H. Frank, RL Report No. 197, February 1943.
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phase of Y,/Y, are plotted in Fig. 6-9 as functions of s/, for the case
where Y. =1, \;/a = 1.96, and B; = B, = 0.5. The effect of the

1.0

Y, /
09 y

YI
Yz

L—

) /
0 0.1 0.2 03 0.4
s / A

Fia. 6-9.—The magnitude and phase angle of the relative effective admittance Y4/ Y
as a function of the separation s of two symmetrical inductive apertures of susceptance
B = —0.5.

0 ~ degrees

interaction is important at small separations and is principally a reduction
in the magnitude of the susceptance.

To describe these effects by means of an equivalent circuit, it is neces-
sary to consider each aperture as a three-terminal-pair network and the
two networks connected together
Line B as shown in Fig. 6-10. Terminals
2 of the two networks are con-

nected by the transmission line

T3, Line A 2 31| [ A for the dominant mode, and
i m terminals 3 are joined by the trans-
Aperture 1 Aperture 2 mission line B for the next higher

Fig. 6-10.—Equivalent circuit of two Inode excited. Line B is attenu-
apertures so close that interaction effects ating since the waveguide is be-
must be taken into account. ’ ;

yond cutoff for the -higher mode.
Three-terminal-pair structures are discussed more completely in Chap. 9.
Unfortunately, the necessary data are not available for most situations,
and interaction effects must be determined by experiment.

6-10. Babinet’s Principle.—Useful results for waveguide structures
with a high degree of symmetry can be obtained by the application of
Babinet’s principle (Sec. 2:10). An example of this has been given by
Schwinger.! The actual electromagnetic problem that is solved to find

!David 8. Saxon, “Notes on Lectures by Julian Schwinger, Discontinuities in
Waveguides,” February 1945.
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the impedance of a symmetrical inductive diaphram is that of finding
the terminating impedance Z, of the structure of Fig. 6-11¢ in which
a solid line represents an electric wall and the dashed line a magnetic
wall. The electric field is outward from the paper. The terminating
impedance of this configuration is 2/X, where X is the shunt reactance
of the diaphragm. Since the fields are independent of the y-coordinate,

o a
B Symmetry E .{_2 % ®
(@) 0 a d - —1_-14/>
E Lt Z,=2jX
ZL: 2'7X Hl -mode quin_et’s
principle
. i Symmetry
T i — -
H H = : a—
] 6 a 2 (o)
'_l 2 f2 1

Y= B[, - E,-mode Y,=3Bf

T16. 6-11.—Application of Babinet's principle to obtain the susceptance of one aperture
from that of another.

the guide can be considered of infinite height. The value of X was given
in Sec. 6-3 and is approximately

X = xﬁ tan? (’2r—a> (20)
g

Since the magnetic field is zero along the plane through the center of the
aperture, a magnetic wall may be inserted there and the configuration of
Fig. 6-11b is obtained. This configuration has the same terminating
impedance 2jX. Babinet’s principle may now be employed to obtain
Fig. 6:11c. The electric and magnetic walls are interchanged, and E
is replaced by H. The terminating admittance j(B/2) of this structure
must be equal to the terminating impedance of Fig. 6-11b, and

.B .
iy = 2;X. 21)

The magnetic wall of the waveguide may now be removed by symmetry
considerations, and the terminating admittance is unchanged. The
susceptance B is now the shunt susceptance of a capacitive aperture for
the first E-mode between parallel plates of separation a. From Eq. (21)

_4a 2')rd
B—)Tv—tan 20’



176 WAVEGUIDE CIRCUIT ELEMENTS [SEc. 6-11

or in terms of the opening d’ of the diaphragm,

_4a wd
B = ™ cot 5" (22)

The guide wavelength A, in Eq. (22) is given by

CRORE!

The susceptance of a slit in rectangular waveguide operating in the
Ei;-mode is obtained by the arguments of Sec. 6:8 by using in Eq. (22)
the appropriate value of N, given by

()= 6) - () - @)

Babinet’s principle in the form of Eq. (21) has been applied also to
corresponding resonant structures such as those shown in Fig. 6-8.
This application is not a rigorous one, however, since the electric walls
that form the waveguide are not transformed. Nevertheless, if the size
of aperture is not too large, Eq. (21) applies approximately. If the
apertures are large or close to the walls of the waveguide, as those in the
capacitive and inductive obstacles of Fig. 6-7, the deviations from Eq.
(21) are large. The product of the inductive and capacitive susceptances
is not —4 as required by Eq. (21) but varies from —2 to —10 over the
range of disk diameters from 2.0 to 5.5 cm.

6-11. The Susceptance of Small Apertures.—The transmission of
radiation through an aperture may be expressed in very general terms!
if the size of the aperture is small enough. On a metallic wall, the
normal magnetic field and the tangential electric field vanish, but a
tangential magnetic field Hy and a normal electric field E; may be present.
1f there is a small hole in the wall, within the hole there will be a tangential
electric field and a component of the magnetic field perpendicular to the
wall. If a linear dimension z of the hole satisfies the relation that
x & A\/2r, then the fields in the neighborhood of the hole are closely
approximated by the unperturbed fields Hq and E, plus the fields from an
electric dipole and a magnetic dipole within the hole. The strength
of the electric dipole is proportional to E,, and the dipole is directed
normally to the wall. Similarly, the magnetic dipole is in the plane of
the wall and of a strength proportional to H,. The constants of propor-
tionality are the polarizabilities of the hole. The electric polarizability
P is simply a constant, since the dipole and the field are paraliel. The
directions of the magnetic dipole and the exciting magnetic field are,
however, not necessarily the same. The magnetic polarizability is

i H. A. Bethe, Phys. Rev., 66, 163, (1944).
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therefore a dyadic quantity. In the usual manner, principal axes of the
hole may be chosen that correspond to axes of symmetry of the hole if
these exist, and the magnetic polarizability is then determined by two
scalar numbers M; and M, that relate the components of H, to the
components of the magnetic dipole. The values of the constants P,
M; and M, can be calculated if it is assumed that the hole is small and
far away from any metallic objects that have radii of curvature compara-
ble with A. When the strengths of the dipoles are known, then the
transmission through the hole may be calculated by finding the radiation
from the dipoles into the waveguide on the other side of the wall. The
calculation of the transmission through a hole is thus performed in two
distinct steps. The strengths of the equivalent dipoles within the hole
are first calculated, and then the radiation from the dipoles is found.
The theory therefore applies to holes in the side walls of the waveguide
as well as to holes in a metallic wall perpendicular to the waveguide axis.
The second case only will be considered here. The properties of holes
in the side walls are treated in Chap. 9. On the other hand, the theory
neglects entirely all reaction of the load upon the generator. For small
holes or large susceptances this neglect is justified.

The radiation from the hole may be expressed in terms of the normal-
mode functions of the waveguide into which it radiates. If the amplitude
is measured by the transverse electric field, the amplitude transmission
coefficient 4 is given by

A8, = /EIXH,-nda (23)

for the magnetic-dipole radiation, where E; is the field in the hole, H, the
transverse normal-mode magnetic field, n a unit vector normal to the
plane of the hole, and Sy a normalizing factor. The integral is taken
over the area of the hole. The quantity S, is

S0=/n-EXths, (24)

where E is the normal-mode electric field. Equation (23) may be written
as

AS():/anl‘H¢d0=H['/nXE1dU,

where H, is evaluated at the hole. The integral of n X E, is proportional
to the magnetic dipole moment and in turn proportional to the incident
field. A similar relation is true for the electric moment, and the total
value of A4 is

A8y = 27 (M\HoHy + MoHonH, + PEE), 25)
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where the - and m-components are taken in the directions of the principal
axes of the hole and the n-component is normal to the hole.

The amplitude transmission coefficient may be expressed in terms of
the susceptance of the diaphragm, since

2

(26)
if the waveguide is the same on both sides of the-diaphragm. Since the
hole is small, B is very large and
]

B = v @7
Finally, since the normal-mode fields are the same on both sides of the
diaphragm, the zero subscripts may be dropped provided that the
amplitude of the fields is doubled. Hence

N == B (MLHF+ MHS, + PED). (28)
For a waveguide operating in the dominant mode, the longitudinal electric
field E, is always zero, and the susceptance of a small hole is therefore
inductive regardless of the shape of the hole or its location. The theory
does not apply to a capacitive slit, since this cannot be considered as a
small hole.

TaBLE 6-1.—VALUES OF THE PovarizaBILITIES OF SMALL HoLES

M, M, pP
Circleof radiusr................ . 4rs 473 B 23
Ellipse * of eccentricity « = \/T— (g)z s ;;’:;f — 55— ‘z’{*i - g%’f
3
Long narrow ellipse (@ >>b)........ glnTé_)j . g ab? 1:; ab?
b
Slit+ of width d and length L. .....| ..o T e

# F and E are the complete elliptic integrals of the first and second kind, respectively:
/2 de
0 \/ 1 — e2sin?e

/2
E(e) = /; de /1 — e sinZ g,

Fle) =

The polarizability M is for the magnetic field parallel to the major semiaxis a; M2 is for the field paralle}
to the minor semiaxis b.
t The magnetic field is transverse to the slit and constant along the length.

Values of the polarizabilities have been calculated for several cases, and

the results are given in Table 6-1. The values of the fields and the
normalizing factor Sp are easily found. For example, in rectangular
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waveguide in the dominant mode, the susceptance is given by

E} = — ﬁg\q sin? 7%39 [M; cos? (I,z) + M, cos? (m,z)], (29)

where 2 is the z-coordinate of the center of the iris and (J,x) is the angle
between one principal axis of the aperture and the z-axis. The suscept-
ance of a narrow inductive slit that is centered may be calculated by
inserting the proper value of My, and it is found to be

A {2a\?
B = ‘5_(@)’

which is the asymptotic form of Eq. (2) for d < a.
For circular waveguide of radius R in the domirant mode, the sus-
¢eptance of a centered iris is

_1 _ 4r
B~ 0955(xR?»

which has been written to exhibit the similarity to Eq. (29). For circular
waveguide operating in the Eg-mode, where the iris is at the center of the
guide and has sufficient symmetry so that no other propagating modes
are excited, the only field at the iris is the normal electric field. The
quantity E2 in Eq. (28) is negative, since the longitudinal field in a wave-
guide is 90° out of phase with the transverse field; B is positive, and the
iris is capacitive. The susceptance is

0.92R+
P, (31)

M, (30)

B =

It should be noted that the variation with frequency of both the inductive
and capacitive small holes is similar to that of the larger irises.

IMPEDANCE MATCHING WITH SHUNT SUSCEPTANCES

6-12. Calculation of the Necessary Susceptance.—Susceptive irises
are widely used in transmission lines to match a load impedance to
the characteristic impedance of the line. In Sec. 4-3 it was shown that
maximum power is delivered to the load if the load resistance is equal to
the generator resistance and the load admittance is equal to the negative
of the generator admittance. If the load and generator are connected
together by a transmission line that is many wavelengths long, as is always
the case in microwave transmission, then the best practice is to match
both the load impedance and the generator impedance separately to the
characteristic impedance of the transmission line. If the load were
matched tothe generator directly through a long line, then a small change
in frequency would produce a large change in the impedance of the load as
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seen through the line, and a matched condition would no longer exist.
Moreover, standing waves would exist along the transmission line even
at the correct frequency, and the resistive losses in the line would be
correspondingly great. By the insertion of a shunt susceptance at the
proper place a short distance from the load, it is possible to make the
relative admittance of the combination equal to unity, and the frequency
sensitivity of the match is small.

The load admittance usually must be determined by a standing-wave
measurement, and it is therefore convenient to express the matching
conditions in terms of the observed standing-wave ratio r and the posi-
tion of a minimum in the standing-wave pattern. If the losses in the
matching elements are neglected, the magnitude of the susceptance
necessary to match a load that produces a standing-wave ratio of r is
the susceptance that produces a voltage standing-wave ratio of » when
inserted in a matched line (Sec. 4-3). The relation between B and »
is given by Eq. (3-28),

r o= \/_4"{:_32,:*”_@', (32)

or

33)

The correct placement of the susceptance is easily determined. A con-
venient reference plane is the minimum of the standing-wave pattern
nearest the load. Here the load admittance is ¢ = 7. This admittance
1s transformed along the line according to the equation

G4 jtan pl

T 1 + jG tan B 34

If the length of line is chosen so that ¥ = 1 4+ jB, a susceptance can then
be inserted at that point to cancel the susceptance of the load. If the
real part of Eq. (34) is set equal to unity, then it is found that

t l = == = =
an e, Vi (35)
or
1
tan™! —=
I \r
VIR S (36)

The negative sign of the square root in Eq. (35) was chosen, and therefore
L /X, 1s less than §, and a positive, capacitive susceptance must be added to
produce a mateh. TIf it is desired to match with a negative, inductive
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susceptance, then /A, is between £ and 4 and is given by

] T — tan™! L
T
N ®D)

The impedance charts described in Chap. 3 are especially useful in
making matching calculations. The calculations just deseribed are
illustrated in Fig. 6:12. The
standing-wave minimum occurs at
the point Y = G; the angle 8l is
determined by moving toward the Y
generator along the circle with the
center at O to the point A on the
circle Y =14 jB. A positive
susceptance added here moves the
admittance to O along the circle
Y=14jB. If an inductive
susceptance is used, the angle is de-
termined by moving from ¥ = @
through A to the point C on the Fi1ec. 6:12.—The calculation of the sus-
circleY = 1 + jB. Theaddition ceptance and position of a matching window

. by means of the admittance circle diagram.
of a negative susceptance trans-
forms the admittance to the point 0. It is obvious from the diagram that
the point € can also be reached by moving from the minimum toward the
load a distance given by Eq. (36).

To obtain a match that has a small frequency sensitivity, the matching
window should usually be placed as close as possible to the load. It
should be remembered, however, that interaction effects are often impor-
tant. It may be desirable to resort to experiment in order to determine
the optimum size and position of a diaphragm after the first approxima-
tion has been obtained by the procedure just described.

6-13. Screw Tuners.—By a technique similar to that described in
the preceeding section, it is possible to design a variable tuner that can
be inserted in a transmission line. To provide a variable susceptance
that can be adjusted in position along the line, a capacitive tuning screw
may be used. The screw is mounted in a closely fitting sleeve that may
be slid along the line. Since a longitudinal slot along the center of the
broad face of a rectangular waveguide or along a coaxial line does not
disturb the fields within the pipe, the screw can be set easily in any posi-
tion. When the screw penetrates the waveguide, currents flow along
the screw. Consequently, the sliding sleeve and the screw threads must
make good electrical contact. Such a device is extremely easy to use.
Both the position and the depth of insertion are always varied in the
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direction to decrease the standing-wave ratio in the line. Eventually
the proper position for match will be reached. The breakdown power of
the line is lowered considerably by such a tuner, and its use is practical
only for small standing-wave ratios. The necessity for a good electrical
contact makes the mechanical design difficult.

To eliminate the sliding sleeve and the contact difficulties that it
causes, several fixed screws may be used as a variable tuner. For
example, three tuning screws sep-
arated from each other by one-
quarter of a guide wavelength is a
commonlyused combination. To
match aload to the line, the center
screw and only one of the outer
ones are employed. The range of
admittances that such a tuner can
produce is best illustrated on an
admittance diagram. If a sus-
ceptance of unity is the maximum
value that a screw can introduce,
then the shaded area in Fig. 6-13

is the range of admittances of the
Fig. 6-13.—The range of admittance pro-

duced by a triple-screw tuner with the tuner uSing one pair of serews.
screws separated by one-quarter wave- Since the other pair of screws is
length, if the maximum susceptance of a
serew is unity. one-quarter wavelength away, the
region enclosed in the dashed lines
is accessible by the second pair. A standing-wave ratio of 2 in all phases
can therefore be matched by this tuner, and slightly larger values of r can
be matched if the phase is correct.

If easily adjustable inductive susceptances were available, only two
screws would be necessary. A tuner! employing an ‘“‘inductive screw”’
has been used in waveguide operating at a 10-em wavelength. The
inductance is a short section of circular waveguide attached to the center
of the broad face of the guide. The inductance is adjusted by a screw
that fills the circular guide.

6-14. Cavity Formed by Shunt Reactances.—The process of matching
a very large standing-wave ratio leads to the formation of a resonant
cavity. Infact it is extremely useful to regard all cavities as made up of
irises of large susceptance in a transmission line. Often the transmission
line is a radial line; the properties of such lines are treated in Chap. 8.
At present only lines that are cylindrical (boundary conditions inde-
pendent of z) will be discussed. If, for example, it is desired to match a
short section of line terminated in a metal plate or short circuit, then a

! See Vol. 9, Chap. 6, of this series.
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diaphragm can be found of such susceptance that the admittance of
the cavity is real. In rectangular waveguide such a process results in a
rectangular box that is resonant.

The admittance of a short-circuited line is ¥ = coth 4. The proper
value of a susceptance B to make the total admittance real is given by

Im (Y + jB) = 0. (38)

If the line is lossless and B is finite, then the conductance of the cavity
is zero. For resonance, the line is nearly one-half wavelength long if B
is large and negative, and the length approaches one-quarter wavelength
as the magnitude of B decreases. In practice, however, the losses must
be taken into account; but since the length I is small, it will be assumed
that ol is small compared with unity, where « is the attenuation coef-
ficient. The magnitude of the susceptance B will be assumed to be large
compared with unity. The length of the cavity is near n half wave-
lengths, and the dimensionless quantity e is defined by
A Ny

l=n§"—e§1—r; (39)

where n is a small integer. The admittance of the line then becomes

1

Tl —je (40)
and Eq. (38) becomes
€ 1
B=@ypre™ % (41)

For an inductive susceptance, e is
positive and the cavity is a trifle
less than n half wavelengths long.
The conductance of the cavity is

al
4= @ & =~ Blal. (42)
It is instructive to follow the
various transformations on an ad-
mittance chart asin Fig. 6-14. In
a lossless line, as the point of ob-
servation is moved away from the
short cireuit toward the generator,
the admittance point travels along ! )
the outer circle in a clockwise di-  jngeh of short-cireuiied line. plus on mduc.
rection. If a large negative sus- tive susceptance of such a magnitude as to
ceptance is added after the point Produce resonance.
has traveled almost half a wavelength, the total admittance can be made

Lossy line

Lossless line /
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zero and a resonant condition exists. If the line is lossy, the admittanc
point spirals inward instead of traveling on the outside circle. It will b
remembered that the magnitude of the reflection coefficient varies as e~2«
After nearly a half wavelength of travel the addition of a negative suscept-
ance brings the admittance to the positive real value given by Eq. (42).

Of primary interest in resonance phenomena is the frequency sensi-
tivity of the admittance. The conductance varies as 1/\2, since B varies
as 1/), if « 1s assumed to be constant, and the derivative of G is

aG .,

TV Ban, (43)
since

dB B

IV (44)

for an inductive susceptance. The susceptance varies much more rapidly
with wavelength. It is easy to show that if B is large, the variation of G
with wavelength is negligible compared with the variation of the sus-
ceptance of the line. If the losses are neglected for this calculation, the
susceptance By of the line is — cot 8l and

B, _ gl .., Bl .
m = )\g cse 6l = X‘; (1 + B ), (45)
since B = cot Bl at resonance. Therefore
dBL — nmw 2

That it is correct to neglect the losses can be verified by differentiating
Eq. (40) directly. The coefficient of B? in Eq. (46) is much larger than
the coeflicient of B? in Eq. (43), and the conductance can be assumed to
be constant. The frequency sensitivity of the cavity can therefore be
described by the Q of the equivalent shunt-resonant circuit (Sec. 4-13),

_wdB _ X (NY dB

Q=554 = 7@(}‘)3? (47)
The various values of @ correspond to various choices for ¢. If the value
given by Eq. (43) is inserted, Qs, the unloaded @, is obtained:

r (A
Qo = ax; (K) : (48)

which is the value of Qo given in Eq. (2-83) with the losses in the end
walls omitted. The unloaded @ is independent of n. If the cavity is
matched. G = 1 and the loaded Q is

nw { A, 2 2
Qz?(K>B' (49)
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The action of the susceptance B is very similar to that of a transformer
of turn ratio |B|. This is most obvious from the equivalent circuit of
Fig. 421. For a pure shunt element, the elements of the impedance
matrix are all equal and

Zu = le =Zy = — %'

The circuit parameters are the two line lengths

2
tan gl, %+1/%—+1z3,
B [Bz 1
tanﬁlz——ﬁ— T+1~_E’

where the approximate values are for B> 1. The transformer ratio N
is given by

(50)

N2=%2+B\/B£+1+1z82. 1)

For resonance the total length of line should be an integral number of
half wavelengths or

Lo+ 1 ="

2 = 2 )
and this is the same condition as that given by Eq. (41).

The transformer ratio N is the stepup in voltage in the cavity over
the voltage in the line if the cavity is matched. The value of N may be
-expressed in terms of the @ as

A 2 =
N = 7w VQ. (52)
The relation of Eq. (52) can be obtained easily by direct calculation.
The quantity @ may be defined by

Q = o _oDerey stored
energy | ost per sec

If the cavity is matched, the energy lo t per second is equal to the
incident power. Hence
[ ¥eE? 4wl av
Q= ) (53)
} [ BH. 48

where the volume integral is taken over the cavity and the surface
integral over the cross section of the waveguide. Fora TE-wave

1 _ €N o,
EE'H' =~ \Nan E?,
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where E, denotes the field outside the cavity. At resonance ¢E? = uH?,
where E; is the field inside the cavity. Equation (53) can therefore be

written as
nrg/2
- EdS
Q=¢..;§£\/E sin? 8z dz /——
ANe | [ Bids
or
o= (%) [ B

2\M [ EBras

Consequently if the voltage is taken proportional to the electric field,
the voltage stepup is given by Eq. (52).

More complicated cases may be treated in a similar fashion. Thus a
transmission cavity may be formed by placing two inductive susceptances
slightly less than a half wavelength apart. In fact, it is immediately
evident from the equivalent circuit (Fig. 4-21) of the iris and from Eq.
(50) that the length is given by

B tan gl = 2. (54)

The loaded @ has just one-half the value for a cavity with a single window;
G is, of course, now equal to 2. It is easy to see from the admittance
diagram of Fig. 6-15 that for a lossless line, the conductance is unity if
the twowindows are equal. Ifthe
line is lossy, the conductance is
larger. To obtain a matched
transmission cavity in a lossy line,
the input window must be slightly
larger (smaller |B|) than the out-
put window.

It should perhaps be men-
tioned explicitly that calculations
of the kind just described neglect
the losses in the iris itself. For
accurate calculations of high-Q
cavities, some estimate of the loss

Fie. 6:15.—The admittance diagram of a should be included. It has been
cavity formed by two inductive windows one-  suggested that a suitable estimate
helf wavelength apart. for the losses produced by the
presence of a hole in a metal wall is made by assuming that the losses
over the area of the hole are twice the losses in the wall before the hole
was cut. It is evident that this is an extremely uncertain approximation.

Lossless line

/27" Lossy line 7 ~..
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CHANGES IN THE CHARACTERISTIC IMPEDANCE
OF A TRANSMISSION LINE

6-15. Diameter Changes in Coaxial Lines.—If the usual definition
of the characteristic impedance of a coaxial line is adopted, a change in
the diameter of the inner or outer conductor results in a change in the
line impedance. Such a change in impedance produces a discontinuity
in the voltage and current, and a reflected wave is produced. At long
wavelengths, no other effects are important. An equivalent circuit of
the junction is therefore simply an ideal transformer that has a turn
ratio n given by

2 — Zs

At short wavelengths or high frequencies other effects become important
and the equivalent circuit becomes more complicated. Although any
one of the general forms of a two-terminal-pair network is suitable, for
example, a T- or II-network, the circuit of Fig. 4-23, which contains an
ideal transformer and two reactive elements, is particularly suitable for
the representation of junctions. For all of the junctions in common use
both in coaxial line and in waveguide, the
series element in this circuit has negligible
impedance and the circuit reduces to a
shunt element -and an ideal transformer. % T8 Yy
If the proper ratio of characteristic im-
pedances is chosen for the two lines, the
transformer can be made to have a turn _ F'¢: 6:16—The equivalent cir-

N N N ! A cuit for a junction between two
ratio of unity. The equivalent circuit is transmission lines. The shunt sus-
therefore simply two transmission lines 2;‘;2:2?6 is called the “junction
connected together with a shunt imped-
ance as shown in Fig. 6:16. The-shunt element in the circuit is called the
““junction effect.”

In coaxial lines, a change in diameter is associated with a distortion
of the fields of the normal principal mode. Higher modes are excited in
the neighborhood of the junction. It is evident that the higher modes
are E-modes, and consequently the stored energy in these modes cor-
responds to a capacitive junction effect as indicated in Fig. 6-16. The
capacitive susceptance should be inversely proportional to A and hence
negligible for low frequencies. At high frequencies, B becomes appreci-
able, although with the coaxial line in use at 10 cm it can often still be
neglected. In accord with the general principles stated in Sec. 6-8, the
magnitude of the junction effect should be nearly the same as the effect
of the corresponding change in height of a parallel-plate transmission line
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or of a rectangular waveguide. The waveguide effect is discussed in
the following section.

6:16. Change .in the Dimensions of a Rectangular Waveguide.
Change in Wareguide Height.—The junction of two rectangular wave-
guides of heights b and b’ is rigorously represented by the equivalent
circuit of Fig. 6:16. The characteristic admittance of the waveguide
should be chosen inversely proportional to the height. In terms of the
parameter

e ’
Bl -

where « is chosen smaller than unity, the junction susceptance is given
by the approximate formula

B _2[ 1—a*(14a\u(a+l) (b ‘
fo-x;[‘“ fo <i’——a> Avwi (57)

for the symmetrical change in height. The function f(b/),) is the high-
frequency correction term. Since the susceptance is positive, the junc-
tion is sometimes termed a capacitive change in cross section. In the
larger of the two waveguides the field configuration is very similar to
that near a symmetrical capacitive slit, and in the smaller guide the field
is not greatly different from that of the dominant mode. It might be
expected that the stored energy and therefore the susceptance given by
Eq. (57) should be approximately half that given by Eq. (6). Although
it is not at all evident from the form of the expressions, insertion of
numerical values shows that the difference is indeed small, of the order
of 10 percent.

By an argument identical with that given in Sec. 64, the junction
susceptance for the completely asymmetrical change in height can be
obtained from the symmetrical case if A, is replaced by \,/2. Similarly,
the junction effect for a change of height in a parallel-plate transmission
line is to be found by replacing N\, by A.

Change in Waveguide Width.—The inductive change in cross section
of a waveguide leads to a junction effect that is approximately one-half
the susceptance of the corresponding thin inductive aperture. The
proper choice of the characteristic admittance allows the equivalent
circuit to be that of Fig. 6-16. Junctions of two types are possible. If
the change in width is symmetrical and from a to @, the waveguide of
smaller width is beyond cutoff if X > 2a’ and the characteristic admit-
tance of the smaller guide becomes imaginary. The proper value of
admittance is

Y, . \a
WV, = T A (58)
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where
14
=3 ——L—2é (59)
Vi-(%)
)
and
CO8 7—r a—,
p=t_ 20 (60)
T

For a'/a « 1, Eq. (568) reduces to

Yo  .mNfa z
wY, = TI32a\a) (61)
For an unsymmetrical change in cross section, = is replaced by

.oa
sm T —
a

=)
a

If N < 2a’, the small waveguide is not beyond cutoff, and the proper

characteristic admittance is

Yo _ Mo (1 - ‘l> &1 (63)

do _ MG
Yo N a

n =

(62)

R M

The rough approximation that the junction effect is half the susceptance
of the thin iris can be replaced by a more accurate expression given in
Waveguide Handbook.

Resonant Change in Cross Section.—A combination of an inductive
and a capacitive change in cross section results in a junction that is
matched. The condition for this seems to be very nearly the same as
the condition for a resonant rectangular iris, which was given as Eq. (14).
Little exact information is available for junctions of this type.

6-17. Quarter-wavelength Transformers.—The reflections produced
at a change in cross section of a transmission line can be used for matching
a load to the line. If a section of line of impedance Z, a quarter wave-
length long is inserted in a line of impedance Z,, the impedance seen at
the input end of the quarter-wavelength section is

_ 4

Zo =7

(64)

if the junction effects are negligible (see Sec. 3-3). Such a section of line
is commonly called a transformer. If the load end of such a transformer



190 WAVEGUIDE CIRCUIT ELEMENTS [SEc. 6:17

is placed at a voltage minimum in the standing-wave pattern produced by
the load, the input impedance is Z, provided that

7, = 2, \[; (65)

where r is the voltage standing-wave ratio. Quarter-wavelength trans-
formers are frequently used in coaxial line for matching in this way.
The impedance change is produced either by increasing the diameter of
the inner conductor by placing a metal sleeve over it or by decreasing the
outer-conductor diameter with a sleeve, since Z; < Z,. If the inner
and outer radii of the coaxial line are a and b respectively and the radius
of the sleeve on the inner conductor is r;, then, since the characteristic
impedance is proportional to the logarithm of the ratio of the radii of
the inner and outer conductors, the proper value of 7, is

rn=b <§>'_1/é (66)

If the sleeve is placed inside the outer conductor, match is obtained
with a sleeve of inner radius 7., where

r—3
Ty = a(%) (67)

The frequency sensitivity of the match is usually not large, but this sensi-
tivity can be reduced by using several quarter-wavelength transformers.!

— :

T
n T ’]\ L

Fra. 6:17.—The equivalent circuit of a quarter-wavelength transformer when the junction
effects are included.

or

If the frequency is high and the junction effect can no longer be
neglected, it is still possible to use quarter-wavelength transformers
effectively. If it is desired to transform a load admittance Y, in this
manner, the equivalent circuit shown in Fig. 6:17 must be used. The
input admittance relative to the main line is

Y. +j(B + Yitangl)
Y, — Btan 8l — jY, tan 8l
1 J. C. Slater, Microwave Transmission, McGraw-Hill, New York, 1942, pp. 577

Ym=]B+Y1

(68)
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If the length of the transformer is chosen so that
Y,

tan 8l = 3’ (69a)
then
2 2
Yo = ul. (69b)
Y,

Equation (69b) thus determines the admittance of the transformer
section, and Eq. (69a) determines the length of the transformer. If B
is positive, then both Y, and [ are smaller than the corresponding values
when the junction effect is neglected.

Quarter-wavelength transformers have also been used in waveguide
matching. For this purpose the capacitive change in cross section is
most suitable.

6-18. Tapered Sections of Line.—The quarter-wavelength trans-
formers for matching two transmission lines are of a characteristic imped-
ance intermediate between those of the two lines. This circumstance
suggests that two lines might be matched by a gradual taper of the
dimensions of one line to those of the other. Such is indeed the case,
but it is found that for many applications such a tapered transformer is
too long if the taper is gradual enough to be reflectionless. It is often
desirable to use short tapers and to arrange that the reflection from one
end of the tapered section cancels that from the other. The investiga-
tion of tapered lines proceeds from the transmission-line equations

dv dl
‘E - —ZI, d—z = —YV,

where Z and Y are no longer assumed to be constant. If I is eliminated
from these two equations, V is found to satisfy

&V dlnZdv
g+ ZYV = 0. (70)

Hence the properties of the derivative of In Z determine the behavior of
the taper. For a gradual taper, it can be shown! that the voltage reflec-
tion coefficient is approximately

1 (din Z 1 (dInZ -zf"m
P L(tm) p(men) [t g
The subscripts 0 and 1 refer to the values of the quantities at the begin-
ning and end of the taper, respectively. If the derivatives are not very
different in value, a length [ of the taper can be chosen to make I' a mini-
mum. For example, if In Z varies linearly along the line, the reflection
! Slater, op. cit., pp. T1f.
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is given by

1
48
if v = j8 does not change over the length of the taper. The quantity
T is thus zero when 8l = nx or Il = A,/2.

6-19. The Cutoff Wavelength of Capacitively Loaded Guides.—Values
of impedance changes and shunt susceptances can be used to compute
the cutoff wavelengths of waveguides with complicated cross sections.
If thin metal fins are inserted from the top and bottom faces of a rec-
tangular waveguide, the cross section becomes that shown in Fig. 6-18a.

(r Y

IS,

r In g_ (1 — v (72)

(@) (b)

F1a. 6-18.—Capacitively loaded waveguides.

The boundary conditions in the waveguide are independent of the z-coor-
dinate except for the discontinuity introduced by the metal fins. The
variation of the fields in the z-direction is known and must be propor-
tional to e~ where x = 2r/X,. Consequently, by arguments similar to
those used in Sec. 68, the problem can be considered as that of a wave-
guide in which the z-direction is the direction of propagation, and this
waveguide is terminated at each end by a short circuit and contains a
capacitive slit at the center. A pure standing wave exists in this guide.
The condition for this standing wave to exist is that the admittance
become infinite at the two metal walls. The admittance Y’ seen to the
right just at the left side of the metal fin is

Y' = —jcot k% + jB: (73)
where k. is the wave number in the z-direction and B is that susceptance
given by Eq. (6), neglecting the high-frequency corrections, except that

k. has been substituted for « = 2r/);; thus

_ 2k.b nd

In ese % (74)

B

The admittance Y’ transformed through a length a/2 of line must be
infinite; therefore

1 + jY’ tan kg =0,
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or

a 2 —
tan k:é = E' (‘l))

The value of k, = 2x/X, is obtained by eliminating B from Egs. (74) and
(75). Ford/b < 1,
A2 = 2mxab.ln %, (76)
wd

The cutoff wavelength therefore increases without limit as d/b approaches
zero, and the guide wavelength approaches the wavelength in free space.
For d/b very small, the presence of the side walls of the guide has little
cffect and the field is concentrated between the two metal fins.

The waveguide cross section of Fig. 6-18b can be treated similarly.
The discontinuity is now a change in the height of the waveguide. The
admittance seen at the center of the guide must be zero, and hence

—jcot ki + jB — jgtan kds =0, (77)
where B is the junction susceptance given by Eq. (57) with k./2 sub-
stituted for «.

In all calculations of this type the possible effects of interaction must
not be forgotten. Thus if the distance I; is too small, the wall of the
waveguide will interact with the junction and the results of the calcula-
tion will be inaccurate.

BRANCHED TRANSMISSION LINES

6-20. Shunt Branches in Coaxial Lines.—If the wavelength of the
radiation in a coaxial line is long compared with the diameter, the junc-
tion effects can be neglected in all cases. Even where the junction effects
are not small, the behavior of a configuration is not greatly altered by
their presence. It has been the practice in the design of components in
coaxial line at 10-cm wavelength to ignore the junction effects in the first
approximation and then to make small alterations in the critical dimen-
sions to take account of the more complicated behavior at high fre-
quencies. Thus a shunt branch in a coaxial line behaves very much as a
shunt circuit at low frequencies. The currents at the junction divide
in the ratio of the two admittances, and a reflection occurs at the junction
that is equal to the reflection produced by the sum of the admittances of
the branches.

A common application of a shunt branch is to form a stub to support
the inner conductor of a coaxial line. The stub is a short-circuited shunt
line of a length approximately one-quarter of a wavelength. The admit-
tance of the stub is therefore zero at the junction, and no reflection is
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produced. If the frequency of the radiation is high, the stub should not
be exactly a quarter wavelength long, but the correct length must be
found experimentally. Such a simple stub is rather frequency-sensitive.
If a standing-wave ratio of 1.05 is allowed, which is a rather large value,
the admittance Y of the stub must be less than +0.055. Since

dY d . T
A s —A (ﬁ] cot, ﬁl)ﬁlﬂ/2 =Jg

the usable wavelength band dA/X is only a little over 3 per cent.

A stub support that is usable over a much broader band can be made
by adding two quarter-wavelength transformers, one on each side of the
stub, as shown in Fig. 6-19. At the center frequency, where the stub

admittance is zero, the quarter-

. gz N o375 1 wavelength transformers are, to-
Rz 8 §—o.s11" gether, one-half wavelength long
< T < 1450"  and the whole device is reflec-
il tionless. At a lower frequency,

—- e 3 the stub presents an inductive
LI z i susceptance, but the transformers
! 1950" —| are less than a quarter wavelength

Fi1G. 6-19.—Broadband stub support. long and the net reflection is

again zero. This is indicated in the rectangular admittance diagram
shown in Fig: 6-20a. The first transformer moves the admittance point
clockwise along the circle from Y, to A; the inductive susceptance of
the stub takes it from A to Bj; and the second transformer moves the
admittance from B back to Y,. At a shorter wavelength, the admittance

B a B B

(a) ®

Fig. 6-20.—Rectangular admittance diagram illustrating the action of the broadband
stub: (@) The path of the admittance point for a long wavelength, (b) the path for a
wavelength shorter than the center wavelength.
diagram is shown in Fig. 6-20b. The first transformer moves the admit-
tance point from Y, to A through more than a quarter wavelength; the
stub is capacitive and moves the admittance from A to B; and the second
transformer moves it from B back to Y,. Here again, to obtain com-
pensation for the junction effects, the stub length must be adjusted experi-
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mentally. The dimensions for a broadband stub for a wavelength of
10 cm are shown in the figure. Such a stub will give a standing-wave
ratio of less than 1.02 from about,
8- to 12-cm wavelength.

Stubs may also be used for
matching in exactly the same
manner as susceptive diaphragms.
The susceptance may be adjusted
by changing the stub length, and
the stub should be placed a dis-
tance from a voltage minimum
given by Eq. (36) or (37).

Stub tuners that are similar to
the screw tuner described in Sec.
6-13 are also in common use.
Since the susceptance of a stub Fie. 6:21.—The range of admittance
may be either positive or negative, covered by a double-stub tuner with the
only two stubs are necessary. If S separated one sahih uf o vayclenh
the stub susceptance is limited to
+1, the area of the admittance chart covered by two stubs one eighth of
a wavelength apart is shown in Fig. 6-21. This diagram should be com-
pared with Fig. 6-13 for a triple-screw tuner.

B_X.A
g e\
& T 4“3 3
Lmﬂ.:./ e - J
(@) ()]

F1a. 6-22.—Series branches in coaxial lines.

6-21, Series Branches in Coaxial Lines.—A series branch may be
made in coaxial transmission lines as illustrated in Fig. 6-22. 1In (a) the
outer conductor is broken, the branch line is formed with a third cylinder
as the outer conductor, and the original outer conductor is also the inner
conductor of the branch line. The voltage across one line is equal to
the sum of the voltages across the other two, if the positive directions are
chosen properly, and the same currents flow in each line. At low fre-
quencies, the lines are therefore in series, with negligible junction effect.
There is a change of impedance and consequently a reflection produced
at such a junction. If the impedances are adjusted, a series branch can
be made with no reflection as indicated in Fig. 6-22b.

If a short circuit is placed in the branch line a half wavelength from
the junction, as at A in Fig. 6-22a, there is a short circuit at the junction
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and power is transmitted without reflection. Current still flows in the
branch line, however, and a very large standing-wave ratio is present.
The current flowing along the branch is a maximum and the voltage across
the branch is zero at the short circuit A and at the junction; at B, a
quarter wavelength from A, the voltage is a maximum and the current
is zero. Since the current is zero at B, the circuit may be broken there.
No radiation will occur from a small gap, since the transverse magnetic
field is zero. Such a joint is known as a half-wavelength choke, or choke
joint. Choke joints are commonly used when it is desired to rotate one
section of the transmission line with respect toanother section. A sche-

(@) ()]
A .

| g ) p—
(© @)

Fia. 6-23.—Choke joints in coaxial line: (a¢) a joint in the outer conductor shown
schematically, (b) a joint in the inner conductor, (¢) and (d) choke joints in the outer
conductor which have reduced {requency sensitivity.

matic representation of the joint in the outer conductor of a coaxial line
is shown in Fig. 6-23a. A similar joint can be made in the inner conduc-
tor, as in Fig. 6-23b. In all cases the short-circuited line is only approxi-
mately a half wavelength long, and the exact length must be determined
experimentally.

Since a choke joint is a resonant configuration, the frequency sensitiv-
ity of the impedance at the junction must often be taken into counsidera-
tion. If the main line has a characteristic impedance Z; and the branch
line an impedance Z, as in Fig. 6-23a, the percentage rate of change of
impedance at the junction is

dZ _  d (.Z, _ %
B B ﬁdﬁ (j Z, tan ﬁl>m=, =] 7. (78)
Thus it is desirable to keep Z, small compared with Z,, Further improve-

ment is possible by making the parts of the choke section of lines having
different characteristic impedances, as shown in Fig. 6-23c. The relative



SEc. 6-22] SERIES BRANCHES AND CHOKE JOINTS 197

impedance Z at the junction is

_ ‘Z_l Z]_ tan ﬂl], + Zz tan [Slg
- ]Zo Z1 —_ Zz tan Blltan ﬁlz

zZ (79)

The impedance derivative when gl, = g8ls = #/2 is
dZ o Z1 ™ é
673~]70§(1+Z2) (80)

Therefore the optimum condition is to have Z, < Z, and Z:>> Z,. This
desirable low-impedance—high-impedance condition reduces the fre-
quency sensitivity by almost a factor of 2, and it is employed in the design
“of nearly all half-wavelength chokes. A more compact choke design is
shown in Fig. 6-:23d. For low frequencies, the ‘“‘folding” of the choke has
little effect on the length or frequency sensitivity.

6-22. Series Branches and Choke Joints in Waveguide.—A junction
that behaves much as a series branch may be made in rectangular wave-

™~~~ Pressure gasket
(@) ®)
F1a. 6-24.—Choke-joint connector for rectangular waveguide.
guide with a secondary guide branching from the broad face of the main
transmission line. Since waveguide dimensions are much longer com-
pared with the wavelength than are the dimensions of coaxial line, the
junction effects are large and cannot be neglected. If the height d" of
the branch guide and the height b of the main line are both small com-
pared with \,, a pure series junction is closely approximated. A choke
joint may be made in much the same manner as in coaxial line. A gap
in the form of a vertical slit in the narrow face of the waveguide has only
a small effect, since the currents in the wall are in the direction of the
length of the slit. A gap in the broad face of the waveguide would
produce, however, a large disturbance. A short-circuited stub line one-
half wavelength long, which is broken at the quarter-wavelength point,
would form a good choke joint. A practical design of a choke connector
for rectangular waveguide is shown in Fig. 6-24. The circular choke
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groove is easy to manufacture, and the high- and low-impedance stub
sections are incorporated in the design. The proper diameter of the
groove must, of course, be determined experimentally; the proper depth
of the groove is very close to one-quarter of a free-space wavelength.

Stub tuners can also be constructed in waveguide through the use of
series junctions. The stubs can be waveguides of either round or
rectangular cross section. Such a stub introduces a series reactance in
the line rather than a shunt susceptance. The application of the duality

- 7
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F1g. 6-25.—Plungers for use in rectangular waveguide.

principle, however, allows the matching formulas and the tuning range
that apply for the shunt circuit to be readily converted to the series case.
To vary the length of a stub line, some form of adjustable short circuit
or plunger is necessary. Plungers are usually designed with choke
joints as indicated in Fig. 6:25a¢. Another design that is very similar
employs three quarter-wavelength sections as shown in Fig. 6-25b. If
the characteristic impedances of the sections, which are proportional to
the waveguide heights, are those designated in the figure, the input
impedance Z of the plunger is

(zl)**

Z,)

z-= <Z> (81)
Zo

Since Z1/Z, can be made small, perhaps 0.1, and Z,/Z, can be 0.5, Z can
easily be as small as 4 X 10~ and the power loss is therefore about 0.01
db. These values are adequately small for nearly every application.

DISCONTINUITIES WITH SHUNT AND SERIES ELEMENTS

6-23. Obstacles of Finite Thickness.—If the thickness of the metal
partition forming an iris in a waveguide is not small compared with a
wavelength, the equivalent circuit is not a pure shunt element but must
contain three independent elements or, if the device is symmetrical, two
elements. Thus a thick wire or post extending across the waveguide
between the broad faces can no longer be represented by an inductive
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susceptance alone, but the T-network that describes its behavior con-
tains series elements also. The electromagnetic problem that must be
solved to find the elements of the equivalent circuit may be reduced as
before to two problems by symmetry arguments. Thus if equal voltages
are applied to the two terminal pairs of the device, a magnetic wall is

(0 (@)

F1g. 6-26.—Decomposition of the problem of the thick post across a waveguide (a)
into the even (b) and the odd (¢) problems. The cross sections are taken in the magnetic
plane.
effectively inserted in the plane of symmetry as shown in Fig. 6-26b.
The terminating impedance of the waveguide is Z..(* (Sec. 4-6), where

Zocoé) = le + Z12-

For the odd case, an electric wall is in the plane of symmetry as in Fig.
6-26¢ and the terminating impedance is Z,,(9, where

2. = Zy — Zy,

or just the value of the series element in the T-network representation.
If the reference planes for the obstacle are chosen as the plane of sym-
metry, then the position of the effective short circuit for the odd case
will be slightly in front of the reference plane. The series elements of
the T-network are therefore capacitive. An accurate calculation gives

(2)

a a

BT T T (Y
24\ a

The shunt element of the T-network is inductive, as for the thin wire, and

the equivalent circuit is that shown in Fig. 6-26d. If the high-frequency
correction terms are omitted, X1; + X12 is given by the imaginary part

(82)
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of Eq. (8). For accurate results these correction terms should be included
and the data given in Waveguide Handbook should be used.

The thick tuning screw must be described similarly by a T-network
with both shunt and series elements. For small insertions of the screw,
the circuit elements are all capacitive. With increasing insertion, the
absolute value of the shunt reactance decreases and the magnitude of
the series reactance increases. No theoretical treatment of the behavior
is available, but experiments indicate that when the reactance of the
shunt element is zero, the series element is approximately —0.25. The
effective short circuit is therefore slightly in front of the reference plane.

A | B B
A

(@) ()]

F1a. 6:27.—A thick capacitive slit and the equivalent circuit.

A thick capacitive slit must also be described by a general two-
terminal-pair network, but a somewhat different treatment is useful in
this case. If the slit is very thick, the configuration can be considered
as a change in the height of the waveguide plus a transmission line of
length equal to the thickness of the slit and then another change in height.
The natural reference planes to choose from this point of view are the
entrance planes of the slit, and a II-network is the most convenient. Thus
if the dimensions are denoted by the symbols of Fig. 6-27a, the elements
of the equivalent circuit in Fig. 6-27b are given by

BI=B—%tan;\jy
g
B —__IZ c27rt (83)
72 = dCS —-)\gz

where B is the junction-effect susceptance for the change in height of the
waveguide (Sec. 6:16). Equations (83) are based on the assumption
that the interaction of the two changes in height is completely negligible.
This assumption is certainly justified when ¢3> d. The experimental
data indicate, however, that these expressions are approximately true
even for irises of very small thickness.

For all thick obstacles, the choice of the reference planes is arbitrary
to some extent, as well as the form of the equivalent circuit. Two
circumstances should be considered in the choice. (1) A certain set of
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reference planes might lead to an equivalent circuit that is particularly
convenient to use for the application at hand. (2) It might be expected
that a particular set of reference planes or a particular form of circuit
would yield elements whose sensitivity to frequency would be most
reasonable. Thus a T-network seems a suitable representation for a
tuning screw, since the series reactances are small and have a simple
dependence on A, and since the single shunt element is resonant. On
the other hand, the entrance reference planes and the I-network seem a
most reasonable representation of the thick capacitive slit.

6:24. Radiation from Thick Holes.—The radiation from small holes
in thick metal walls should be treated similarly to the thick capacitive
glit. The hole should be regarded as a transition from the normal wave-
guide to waveguide whose cross section is that of the hole, and back again.
Within the hole the waveguide has a certain characteristic admittance,
and there is a shunt susceptance at the junction. Since the hole is small,
the small waveguide will be beyond cutoff, the characteristic admittance
will be imaginary, and the propagation constant real. Thus, power is
attenuated through the hole without a change in phase. If the hole is
circular, the attenuation constant is

2 1.706d\* 16.0
a = ﬁ \/1 — <T) ~ 5 db/meter, (84)

where d is the diameter of the hole. The junction susceptance should be
approximately one-half the susceptance of a thick hole. Such accurate
calculations have been made for only one case: a circular hole centered in
rectangular waveguide. Waveguide Handbook should be consulted for
the results.

A useful empirical rule is in common use for the calculation of the
power transmission through a small circular hole. The transmission 7
in decibels is given by

T =T + 2a, (85)

where ¢ is the thickness of the hole, « is given by Eq. (84), and 7" is
the transmission through a thin hole,

TI =10 logw E?‘
4

The accurate calculations for the centered circular hole verify this
empirical relation rather closely, and Eq. (85) is extremely valuable for
design calculations. It may be relied upon to be accurate to about 1 db
when used with the formulas of Sec. 6:11 for 7”.

6-25. Bends and Corners in Rectangular Waveguide.—The transition
from a straight waveguide to a smooth circular bend, either in the E- or
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in the H-plane, is another junction problem. The bend has a slightly
larger impedance! than the straight portion, and there is a characteristic
junction susceptance. If the radius of curvature is large, these effects
are small, and negligible reflections occur at the bend. Thus a smooth
bend is a practical method of changing the direction of a transmission
line. If the bend has a small radius of curvature, it is still possible to
have a reflectionless device by arranging the reflection from one transition
to cancel that from the other. Waveguide bends of small radius are

T
_ L

(b)

TN
! ////
(a)
X
d
{c) (d)

Fig. 6:28.—Waveguide corners: (a) An E-plane corner with the equivalent circuit shown
in (b). Reflectionless corners are shown in (¢) and (d).

b

difficult to manufacture, however, and special techniques must be
employed.?

A sharp corner in waveguide is a more interesting device. If the
reference planes are chosen as indicated by the dashed lines in Fig.
6-28a, the equivalent circuit of the corner is that shown in b of the same
figure for both E- and H-plane bends®. The magnitudes of the series
reactances and of the shunt susceptances are large, and large reflections
oceur from a sharp corner in a matched waveguide. At a certain angle a
resonance occurs, the series reactances become infinite, and the shunt
susceptance zero. For an E-plane corner at 3.2 cm in waveguide 0.4
by 0.9 in. ID, the angle 6 for resonance is about 112°; for an H-plane
corner, the angle is 106°.

18, A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, Chap.
8, p. 324.

2 R. M. Walker, RL Report No. 585, July 1944.

3 Pickering, NDRC Report 14-460, 14 July 1945.




SEc. 6-26] BROADBANDING 203

A reflectionless change in direction can be made by combining two
sharp corners! so that the reflections cancel as indicated in Fig. 6-28c.
The proper distance z cannot be determined, however, from the equiva-
lent circuit of a single corner, since z is small enough for the interaction
effects to be important. Such mitered corners are in common use, since
they are easy to make and have low reflections over a fairly broad band.

A reflectionless device can also be made by cutting off the edge of a
sharp corner as indicated in Fig. 6-28d. If the distance d has the proper
value, the reflection can be made zero for any angle of bend. This value
of d is, however, very critical, and a bend of this type is difficult to
manufacture.

6-26. Broadbanding.—The techniques that have been described in
this chapter for matching a load to a transmission line are straightfor-
ward and can be definitely formulated. With lumped susceptances or
quarter-wavelength transformers a matched condition is obtained at
one frequency only. It is usually desired, however, that the load be
matched to the line over a band of frequencies. . Specified bandwidths
vary from narrow, perhaps 1 per cent, to perhaps 20 per cent. Over a
20 per cent band the value of a matching susceptance also varies 20 per
cent; and if a high standing-wave ratio exists, it can be canceled out only
over a small band. The techniques for matching a microwave device
over a broad band are not well defined, and no practical general procedure
has been developed for ‘“broadbanding’ a piece of microwave equip-
ment. Certain methods that have been successful for particular applica-
tions will now be described. It should be pointed out that although when
expressed as percentages the microwave bandwidths under consideration
are small compared with easily attainable bandwidths at audio or video
frequencies, in terms of megacycles per second they are much larger.

In the previous discussion it has always been assumed that the
problem was one of matching a dissipative load to the transmission line.
A two-terminal-pair device is also said to be matched if there is no
reflected wave at one terminal pair when the transmission line at the other
terminal pair is terminated in its characteristic admittance. Lossless
two-terminal-pair junctions can be matched by placing irises or trans-
formers in either transmission line or in both. It is necessary to match a
two-terminal-pair junction for power flowing in only one direction, since
no standing waves exist in either the input or the output lines.

It has already been pointed out that the matching diaphragm should
be placed as close as possible to the load. The extent to which an added
length of transmission line contributes to the frequency sensitivity can
be easily calculated by differentiating the equation of transformation
of an admittance by a line,

1. M. Walker, loc. eit.
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Y.+ jtan Bl
1+ jY. tan gl

lfin =

The result can be expressed as

w inn o )\‘, 2 w dYL
TFGT de — P (i) TIE GV de (86)

This equation is easily interpreted if it is realized that

aY 1

_1-Y
T14Y

where

Equation (86) thus expresses the increase in the frequency sensitivity
of the phase of the reflection coefficient from the added length of line. It
appears reasonable, therefore, that a matching susceptance should be
placed as close as possible to the load.

Resonant irises can sometimes be used to extend the bandwidth of a
microwave device. If the device is matched at one frequency wi, then
at a higher frequency w; a position in the transmission line can be found
at which the admittance is 1 — jB, where B is positive. If a resonant
iris is added in shunt with the line at this point and the resonant frequency

IS w1, the combination is reflectionless
at w;.  If the @ of the iris is properly
chosen, the iris susceptance can be
4 B made to equal B at the frequency w,.

r Thus the total admittance of the iris
and the load is again equal to unity
at ws. If the two frequencies do not

10 differ by too much, the reflections

w, w, may be small in the whole region from

Fie. 6-29.—Standing-wave-ratio curve w; to we. The curve of Standing—
of a load inatched at wi with (Curve B)  \wyve ratio as a function of @ will
and without (Curve A) a resonant iris. R | N

have the form indicated in Fig. 6-29.
If the susceptance of the load at w, is small, the separation of the resonant
iris and the load is a quarter wavelength. This technique is thus equiva-
lent to that employed in the construction of bandpass filters! and is
analogous to a double-tuned circuit at low frequencies.

Other resonant devices can be used in a similar manner to extend the
bandwidth over which a load is matched. A resonant transformer can be
made by use of a length of line of high characteristic admittance. If the

1 See Vol. 14, Chap. 3, and Vol. 9, Chap. 10, Radiation Laboratory Series.
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junction effects can be neglected, the line section should be a half wave
length long. The resonant length when junction effects are present can
be found from Eq. (68) of Sec. 6:17 by equating Yi. and Y. The reso-
nant length is given by

2Y.B

tan Bl = m'

(87)

Another procedure that can be used rather often to obtain a broad-
band match is illustrated in the admittance diagram of Fig. 6:30. The
curves give the input admittance of a transition section between coaxial
line and waveguide when the coaxial line is matched. By adjustment of

Fig. 6-30.—Admittance diagram of a transition from waveguide to coaxial line. The
dimensions of the transition can be adjusted to give a match over a small band shown as
Curve A. If, however, the dimensions are altered to mismatch the junction (Curve B) a
broadband match (Curve D) is obtained by adding an inductive susceptance.

the dimensions of the transition a match can be obtained at one frequency
without the use of any matching susceptances. The match is, however,
sensitive to frequency, and the input admittance is shown as Curve A.
An alteration of the dimensions results in the input admittance shown in
curve B. If the transition were now matched by a capacitive susceptance
placed only a short distance from the input terminal, an admittance curve
very similar to Curve A would be obtained. If, however, an inductive
susceptance is placed a little more than one-quarter wavelength away
from the input terminal, as shown by Curves C and D, a smaller variation
of input susceptance is achieved. Thus the usual rule that the matching
susceptance be placed as close as possible to the junction is violated here.
A more complete discussion of this example and others where a similar
technique is fruitful can be found in Chap. 6 of Vol. 9 of this series.

Tn all the matching techniques o far described, matching elements
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are placed in only one transmission line. If a two-terminal-pair device
is to be matched, it may be possible to achieve better results, since the
matching elements can be placed in both transmission lines. The
broadband stub described in Sec. 6-20 is an example of this procedure.
By means of quarter-wavelength transformers in each of the two lines,
it is possible to make the reflections vanish at three wavelengths, and a
much broader bandwidth is obtained. The technique has been employed
very little up to the present time in the design of microwave components.
Since the method appears to be a fruitful one, some discussion of it is
warranted. One possible general approach to the problem has been

1—| N |2— N z—| N 1;

Fig. 6:31.—Procedure for broadband matching of a two-terminal-pair network N by
means of the broadband transformers N and N,

suggested by R. H. Kyhl. It can be shown! that for two arbitrary fre-
quencies there exists a load impedance Z that is transformed by a given
two-terminal-pair network to an impedance Z’. This is evident, since
if Z exists, it is given at one frequency by

7= Iy — P (88)
M Zn+Z
and at the other by
7=z, -2 (89)
N7+ 2

Equations (88) and (89) can be solved simultaneously for Z and Z’ in
terms of the matrix elements at the two frequencies. A given network N
can then be matched over a broad band by the arrangement shown in
Fig. 6:31. The networks N, and N; are broadband transformers that
transform Z’ to 1 and 1 to Z, respectively. The network is matched at
two frequencies at one terminal pair and consequently is also matched
at the other.

1 Albert Weissfloch, ‘‘Application of the Transformer Theorem for Lossless
Fourpoles to Fourpoles in Cascade Connection, Hochf. u. Elekakus. 61, 19-28, 1943.



CHAPTER 7
RESONANT CAVITIES AS MICROWAVE CIRCUIT ELEMENTS

By RoBeERT BERINGER

A dielectric region completely surrounded by conducting walls is a
resonant electromagnetic system. There exist electromagnetic field
solutions of certain frequencies and spatial configurations that satisfy
the boundary conditions and correspond to the storage of electromag-
netic energy over time intervals that are long compared with the periods
of the resonant frequencies. Such a system is commonly called a cavity,
and the resonant solutions are the normal modes of the cavity. Each
cavity has, of course, a different set of normal modes, differing both in
frequency and in spatial configuration. All such sets have an infinite
number of members.

If the set of normal modes is ordered with respect to increasing reso-
nant frequency, it is found that there is always a lowest resonant fre-
quency but, in general, no highest resonant frequency. In the direction
of higher frequencies, the normal modes increase in complexity and in
density, becoming infinitely dense at infinite frequencies. It is the first
few members of the set that are of interest here because, for cavities of
convenient size, these members are found to lie in the microwave region.
In fact, for cavities of simple shape, the linear dimensions of the cavity
are of the order of the wavelength of the lowest resonant frequency. For
this reason, such cavities are commonly used as resonant elements in
microwgave circuits.

When a cavity is used as a circuit element, it is necessary to provide
openings in the cavity walls for connection to the remainder of the circuit.
These couplings will, of course, change the nature of the normal-mode
fields. However, in most practical cases, the fields are not changed
appreciably, and a knowledge of the normal-mode fields is therefore still
useful.

The normal-mode fields can be found in terms of known functions for
certain completely isolated cavities of simple geometrical shapes. Some
of these solutions are tabulated in Chap. 4, Vol. 11, of this series. Our
main concern here will be the circuit features of coupled cavities.
Although the complete field solution of a coupled cavity is very difficult
and may be impossible, there are many circuit features which all coupled

cavities have in common.
207
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A microwave circuit that contains cavities as resonant elements is
composed of one or more transmission lines or systems, connected to the
cavities by openings in the cavity walls and perhaps connected together
in various ways as well. Although the general system may be of great
complexity, it can be simplified by cutting each of the transmission lines
near each cavity and separating each cavity from the system. Each
of the separated elements consists of a cavity provided with one or more
short sections of transmission line and their associated couplings to the
cavity proper. Such elements are called cavity-coupling systems. Ina
complete circuit solution, each cavity-coupling system is treated sepa-
rately, and the solutions are combined with an analysis of the transmis-
sion lines to give the complete desecription.

In developing this analysis, it is convenient to use the method of
equivalent circuits, that is, to replace each cavity-coupling system by
impedance elements of known magnitude and frequency dependence.
Such a representation contains all of the facts that are pertinent to the
circuit analysis of transmission systems containing cavities as elements.

There appear thus far two aspects of the problem: the complete
field description of the cavity-coupling system and the equivalent-circuit
representation. It is, of course, true that the two descriptions are
equivalent and that a complete field description is required to give all
of the details of the equivalent circuit. It is also true, however, that
many of the features of the equivalent ecircuits can be found without a
complete field description. These features are common to all cavity-
coupling systems and form a basis for the circuit theory of such systems.
In any particular case, a field description is required to specify completely
the equivalent-circuit elements.

EQUIVALENT CIRCUIT OF A
SINGLE-LINE, LOSSLESS CAVITY-COUPLING SYSTEM

Consider for simplicity a cavity-coupling system without loss, con-

taining only a single emergent transmission line. Such a system is

shown in Fig. 7-1. It is possible to define, at a

reference plane A4, a voltage and a current that

are uniquely determined by the electromagnetic

fields interior to A. The voltage-to-current ratio

4 at this plane defines an impedance, which is the in-

put impedance of the cavity-coupling system. It

Fie. 7-1—Single- 18 pure imaginary and a function of frequency alone.

Liv':err"“y'coup““g This impedance function can frequently be rep-

’ resented by an equivalent circuit. It is desired to

find this function or representation and, in particular, its frequency
dependence.
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7-1. Impedance Functions of Lossless Lumped Circuits.—The
problem of finding the impedance function of a cavity-coupling system is
closely related to the impedance-function representation of a lossless, or
purely reactive, n-mesh circuit with a single pair of exposed terminals.
The n-mesh circuit is analyzed in the well-known manner of Foster’s
reactance theorem.! It is found that any such circuit can be represented
by an input impedance function that is a rational fraction of the form

(0 — of)(@® — wf) - - - (0! — )

@’ — wh)(w® = wf) - - (0 — whiy)

Z(w) = jAw (1)

The funection is a pure imaginary. It has poles and zeros at frequencies
0, o, wgy, . . ., wea 2 and wy, w3, . . ., wa._y, respectively. As Eq. (1)
illustrates, and it is frequently proved, the poles and zeros of an imped-

2'4 2
n Zn ‘ ]
CZn-Z
Fig. 7-2.—Input-impedance representation of an n-mesh circuit with poles at w = 0 and

w = @0,

ance function are simple, or of first order. It is seen from Eq. (1) that
two networks are equivalent, that is, they have the same impedance at
all frequencies, if they have the same poles and zeros and have imped-
ances numerically equal at a single nonresonant frequency. This latter
condition fixes the value of 4.

An expression of the form

= 4 Qo Gz .. Gon—2

Z(w) = jAw <1 + e + R + + o w%,._g) (2)
is obtained by expanding Eq. (1) in partial fractions. Such a function
can be represented by the series cireuit of Fig. 7-2. The circuit param-
eters are given by

L2n=A

P AP S (7 /s C)]

LY W — & Jumu o =0,2,4, - ,2n —2
1

Lk—m

In Egs. (1) and (2) the network is taken to have poles at both w = 0
and w = =. In special cases, one or both of these may be removed.

1 Guillemin, Communication Networks, Vol. 1T, Wiley, New York, 1935, Chap. §;
Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, Chap. 5.
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Removal of the pole at w = 0 corresponds to putting Cy = « (short-
circuiting Co in Fig. 7-2) so that
Z(w) >0 as w—0. The pole at
» — o is removed by putting L., = 0.
Then Z(w) — 0 as w — .

,[Cl Tca Con-1 T The input admittance function
ﬁm 73— Inpatadmittance repre- analogous to Eq. (2) is obtained by
sentation of n-mesh circuit with zeros expanding Z7'(w) = Y(w) around the
atw =0and w = . poles of Y(w), namely, wy, ws . . .,

O

Ll L3 I‘Zn-l

win1. This yields
Y(w) = Z(w)™!
=__ij—1<le .+ bs ++2b2;1>(3)

w! — w0 — ) w? — wl, |

Equation (3) may be represented by the shunt circuit of Fig. 7-3,
where

'
“r = [1[0[
1
- I;[A;i

_ (Y )
L, = (‘wz —l

In the expansion of Eq. (3) Y(w) has been assumed to have zeros at
@ =0and at w = «. As in the impedance representation, these zeros
may be removed in special cases, corresponding to degeneracies in one or
two of the resonant elements.
The zero at w = 0 is removed-by
letting one of the C; = «,in which
case Y{w) — « as w—0. The
zero at w = « is removed by let-
ting one of the L; = 0 so that Fie. 7-4.—Input-impedance representation
Y(w)—>°0atw—>oo. near a pole w = wg.

At frequencies near one of the poles of Z(w), Eq. (2) may be written
as

f=1,3 - 2n—1

C

. . wAa
Z(w) = jXi + P 4)
an approximation that lumps all contributions from other poles into the
almost constant term X,. This approximation is good at frequencies
near the pole w, and far removed from any other poles. Equation (4)
can be represented by the circuit of Fig. 7-4, where
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Aa,, = — Cik,
o= L.
k Lka

In a similar manner the admittance function Y (w) reduces to

. . A
Y(@) ~ ~iBi — i ey (®)

near the pole w;, and Eq. (5) can be represented by the circuit of Fig.
7-5, where

2 —
“r = LG -B Ly
and
N “
LA Fie. 75—In-

o put-admittance
In the study of cavity-coupling systems, it is often representation near

necessary to know the behavior of the system at fre- °Poe® =@
quencies near a particular resonance. There is therefore need for equiva-
lent-circuit representations of the form of Figs. 7-4 and 7-5.

7-2. Impedance Functions of Lossless Distributed Circuits.—The
impedance-function representation just discussed is of great generality
and utility in lumped circuits. It furnishes a method for finding the
equivalent circuit of any lossless, single-terminal-pair network in terms
of the frequencies at which either Z(w) or ¥ (w) is infinite. An extension
of the method to distributed circuits is clearly desirable.

It has been stated that a cavity has an infinite number of resonant
frequencies. This is true for all distributed circuits. The impedance
function, therefore, has an infinite number of poles and zeros, correspond-
ing to an infinite number of network meshes. This suggests an extension
of the foregoing method to the representation of a network with an infinite
number of meshes. Such an extension is formally possible and has been
carried out.! The expansions of Egs. (2) and (3) are formally the same
as those for the lumped-constant circuits, except for the fact that n — o« .
Schelkunoff has stated that convergence difficulties sometimes arise in
such series.

Although this formal extension is possible, it is more satisfactory to
use the methods of Chap. 5 which make use of the field equations in
defining and formulating the input impedance of a distributed circuit.
In Chap. 5, a region surrounded by a perfectly conducting surface per-
forated by a single transmission line is discussed. Nothing is specified
about the region except that the dielectric constant, permeability, and

! Schelkunoff, Proc. IRE, 32, 83 (1944).
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conductivity are independent of time and of the field quantities. The
transmission line is assumed to operate in a single transmission made.
It is found possible to define voltages and currents at a reference plane
normal to the axis of the transmission line which describe uniquely the
field configurations in the region interior to the reference plane, except for
certain degeneracies in the completely lossless case. These degeneracies
will be ignored for the moment. By applying energy considerations to
the interior and to the waves in the line, it is shown [see Eqs. (5:13) and
(5-14)] that

Jo2(Wy — WE),

2() = i
and ] (6)
Y(w) — ]w2(W:E : WH))
zee

where Wy and Wz are respectively the time average of the magnetic
and electric energies stored in the system interior to the reference plane
and 7 and e are respectively the terminal current and

I=lycoswt L voltage measured at that plane.
- The zeros of Z(w) [poles of Y(w)] and zeros of
¢ Y (w) [poles of Z(w)] oceur at frequencies for which
o— We = Wgx. These frequencies, infinite in number,

Fig. 7-6.—Simple ser-

! ple are defined as the resonant frequencies. This defi-
1es-resonant circuit.

nition of resonance in terms of electric and magnetic
energies is equivalent to the more usual definition of resonance for a simple
lumped circuit. Consider, for example, the circuit of Fig. 7:6. The time
average of the stored electric energy is

we = Len (L QS/W os? wi dt
s=5Ch\e) - ), coste

_ 1
T 407C

and the time average of the stored magnetic energy is

T/w
Wu=i1p? cos? wi di
2 T Jo
= LI}
At the resonant frequency, w} = 1/LC and so
_ I _ 1.
We = 422C = ELI" = Wa.

Thus the frequency at which Wz = Wy is the usual resonant frequency.
Referring again to the general expression [Eqgs. (6)], it has been shown
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[Sec. 5-24, Eq. (5-162)] that if Y(w) has zeros at wiy, wy, * + -, then
Z(w) can be expanded as
20 = =2 ) ra s + s, @)
n=1

which is an obvious extension of Eq. (2) to the case of an infinite number
of resonances. The question of the convergence of the series in Eq. (7),
in the most general distributed case, is not always straightforward. All
ordinary cavity-coupling systems, however, are free from convergence
difficulties. In all practical cases, Eq. (7) reduces to Eq. (4) near a
resonance.

7-3. Impedance-function Synthesis of a Short-circuited Lossless
Transmission Line.—1It is illustrative to consider a simple example of a
distributed circuit in which Eq. (7) is evidently convergent and the poles
and zeros of the impedance function are well known. A short-circuited
lossless transmission line is such an example.

Let the line operate in the fundamental TEM-mode (A = },), and
let the characteristic admittance be Yo Then, at terminals at a dis-
tance ! from the short-circuited end, the input admittance is

Y = —jY, cot Q%rl
= —jY, cot %l (8)
The admittance has poles at
w = nws, n=01 2 - -,

where w; = we/l, that is, [ = /2.
If the substitution I/c = 7/w; is made, Eq. (8) becomes
Y

. w
7, = —jCOtﬂ';’—l' 9)

Expansion of cot w(w/w,) in partial fractions results in

© w
Yy .1, .2 w)
i k= *(*5 (1o
T n=1n? — | —
w1 w1
Consider the admittance of an inductance Lg; it is Yo = —j/wLe. The

first term of Eq. (10) can be identified with such an inductance by
putting
. 1 .1
IS = Ty
.
w1
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whereby
T l
Lo = oV o¥o (11)
Each term of the sum in Eq. (10) can be identified as the admittance
of a series L.C-circuit. Such a series circuit has an admittance

T
_ 1 . Lae} o Ljed

Yﬂ = L .—1_ =1J 1 — w_z =17 "t — ‘—0_2’ (12)
Jobkn = wCy w2 w?

where w? = n*w? = 1/L,C,. The values of L, and C, may be identified
if it is noted that

w w 1
2Y0, @ _ . wil,
I J R w?
n = = n: — —
1 wy
from which
b d 1 l
Ln = 9% ~ 270 = 2,
and n=12---. (13)
C kli _ A%K‘l _ 2lY

wil, nlomr  niri

The short-circuited transmission
line is evidently represented by the
circuit of Fig. 7-7, where the circuit
c, elements are given by Egs. (11)
Z__— and (13). The convergence of
Fra. 7-7.—Representation of a short-cir-  this representation is assured by

cuited transmission line. Eq. (]0) Near a resonance, a
single term predominates and represents the admittance very well. Fig-
ure 7-8 shows the exact form of Eq. (10) and curves for two approxima-
tions' (one and five resonant elements).

EQUIVALENT CIRCUIT OF A
SINGLE-LINE CAVITY-COUPLING SYSTEM WITH LOSS

The theory that has been given thus far is incomplete for the solution
of the problem of cavity-coupling systems, since it deals only with com-
pletely lossless systems. The treatment must be extended to include

tE. A. Guillemin, “Development of Procedure for Pulse-forming Network,"”
RL Report No. 43, Oct. 16, 1944,  Guillemin has shown that a better approximation
can be obtained with a finite number of resonant elements by choosing the resonant
frequencies to be slightly different from naw:.



Sec. 7-4] SLIGHTLY LOSSY NETWORKS 215

loss. This can be done by any one of several approximate methods,
each particularly useful for a certain class of problems. Although a
general circuit representation,! valid at low frequencies, exists for an

+374

+33

+32

Exact value
i N A

+]1

| %

Five resonant /' One resonant Exact value

elemen!ts ZA/ lelement | )

Yo 02| o4 s o8 10| 12| 14 %.6 18] 20

Five resonant
/ /f elemen/ts -
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4 /
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|

Frc. 7-8.—Curves showing exact form of admittance function and two approximations.

arbitrary two-terminal network that has lossy elements, it is difficult to
handle. The generalization of the representation to microwave circuits
has not been carried out, and in fact it may not prove to be feasible.
Indeed, even the solution of the field equations obtained by expansion in
terms of sets of orthogonal modes breaks down if the losses become too
great. In practice, microwave devices do not have large losses, and it
will suffice to treat only the cases where the approximate methods apply.
A fruitful method of treating slightly lossy networks proceeds from
Foster’s theorem.

7-4. Foster’s Theorem for Slightly Lossy Networks.—The extension
of Foster’s theorem can be carried out by introducing a complex fre-

' 8. Darlington, “Synthesis of Reactance 4-Poles,” J. Math. Phys., 18, 257-353
(1939).
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quency, or oscillation constant, defined as A = jo 4+ £, Input imped-
ances, being functions of this complex frequency, are written as Z(A).
Voltages are defined as Re (VeM), and currents as Re (IeM);

Ver = Z(\)IeM.
In this notation, Eq. (1) for the input impedance to a single-terminal-pair
network is written

x(v AT

(14)

where A, As, . . ., and 0, Ay, Ay, . . ., are respectively the zeros and
poles of Z(\). For passive networks all decrements are negative, cor-
responding to a decrease in ampl:itude with time. Hence, all functions
Z(\) have negative ¢ at the poles and zeros; that is, all poles and zeros
of Z() lie in the left half of the A-plane.! As in the lossless case, Eq.
(14) is expanded around its poles, with the result that

Ay

<x+ + +x—x4+"')

O
A)\+ +A2m; n=20,24---. (15

n

z\)

The poles and zeros of Z()\) occur as conjugate pairs so that one term in
the sum is of the form
an an
x—x.,+>\—>\:’ (16)
where N\, = jw. + & and M = —jw, + £..
If, then, each mesh of a reactive network has a very small amount of
loss (i.e., small £,) introduced into it, Expression (16) may be written as

An 223
)\—jwn—fn+)\+jwn—fn

The values of Z(\) that are of interest are those for real frequencies
M = jw, for which Eq. (15) becomes

A (2jw — 2&,
Z\) = jAdw — 3 ‘@ +4 z (w? —acfgji 2waE7. )+ gy

which reduces to

A 2]
Z(0N) = jAe — 520 4 4 z e e o) (7

n

for stall loss. Tt is seen that Eq. (17) is of the same form as in the loss-

! Guillemin, loc. cit., or 8. A. Schelkunoff, Electromagnetic Waves, Van Nostrand,
New York, 1943, Chap. V.
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less case, except that the summation contains an imaginary term in the
denominator. At each resonance v = w,, therefore, Z(\) does not go to
infinity but has a real contribution Aa,/£, from the summation.

The admittance case for small loss proceeds in an analogous fashion.
The result is obtained, for real frequencies (A = jw), that

Y(\) = jBw — j%‘-’ + B z ( ba2je (18)

wl — w? ~— 2jw£,.),

where w, are the poles of the admittance function, Ay, X;, . . . .
7-5. The Impedance Functions

. ! c  » i
of Simple Series- and Parallel- '
resonant Circuits.—The represen- 1 cos ot —w O—F—AAA—~TEN—0

tation of Eqs. (17) and (18) may Fra. 7-9.—Simple serlies-resonant circuit with
be accomplished in a way anal- o

ogous to Foster’s method. Consider the simple series circuit of Fig.
7-9; its impedance is

Z() = R +j(cuL - ;10)
If the resonant frequency w, is defined as that frequency at which Z(w) is
pure real, w} = 1/LC and

Z(w) = R + jLwo (i‘i — 3")-

wo w

The @ of the circuit at resonance is

O =2 energy stored
4 energy lost per cycle
$LI?  wel
= bl ol ol
=2 PR = R
In terms of this Q,

Z(w) = R +jQR(wﬂo - ‘ﬂ’),

w
or

Y(o) = ! ,
R + jQR (ﬁ _ ﬂ’)

@Wo 5]

w_w‘o
P/ )
wi — w?+ g —Q?

We see that the summation in Eq. (18) can be expressed by a sum of
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terms of the form of Eq. (19) corresponding to a number of simple series-
resonant circuits in parallel.
Consider the admittance of the circuit of Fig. 7-10; it is

V) = +jwiL+ juC

_1 , w o
_R-f—]woC(uTo w>;

where

Fig. 7-10.—Sim-

ple shunt-resonant 9 _ 1
circuit with loss. wy = L—C
At resonance, the @ of this circuit is
Q = wokC,
from which
_ 1 Qfew  w
Y(w) = I_2+JI_B(ZO E)
1
Z =
“=3 192 _ “’J>’
R R wo w
jwwoR
= __Q—wa_ (20)
wl — w4+ 0

Comparison of Eq. (20) with Eq. (17) shows that the summation in Eq.
(17) can be represented by a number of shunt-resonant circuits con-
nected in series.

7-6. The Equivalent Circuit of a Loop-coupled Cavity.—Thus far,
arbitrary cavity-coupling systems have been treated, first lossless sys-
tems and then systems having a small amount of loss introduced into
each resonant mesh. The circuit representations have been derived
either directly from field considerations or by analogy with lumped cir-
cuits. Although this approach is very fruitful, it is only qualitative in
that there are a number of arbitrary features in the equivalent circuit.
These features can be specified completely only by an actual solution of
the field problem for the cavity-coupling system. This, unfortunately,
has been done only in a few special cases. One of these is the case of a
loop-coupled cavity.

It is instructive to study this solution. The circuits are derived from
a new and more physical point of view; and in particular, the physical
form of the approximations necessary to treat the dissipative system are
made apparent. It has been shown that the treatment of such systems
by an extension of Foster’s theorem is uncertain with regard to the physi-
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cal meaning of the small-loss approximation. The field approach dis-
plays this approximation more clearly.

Only in certain cases can the general field problem be solved. There
are several limitations. Since such methods begin with the unperturbed
normal modes of an isolated, lossless cavity, these must first be found.
This is possible only for certain regular shapes. Also, the exact form of
the coupling of the transmission line to the resonant mode must be found.
This is very difficult, except for a cavity coupled to a coaxial line by a
small loop or probe. The details of the problem of iris-coupled wave-
guides have not been solved.

A number of authors have treated the field aspects of the cavity
problem, with various degrees of completeness. The normal-mode
fields have received most of the attemtion. Condon! has treated the
normal-mode fields and the effects of dissipation in the cavity walls.
Slater? has made a very exhaustive treatment of the general problem;
he treats wall losses and solves the loop-coupling case. Crout® and
Bafios* have applied the very elegant Lagrangian methods to the problem.
This approach will be adopted here, and a brief summary of the simpler
features of the Lagrangian method, as formulated by Bafios, will be given.

Tt will be assumed that the normal modes of the lossless, unperturbed
cavity have been found. These normal modes are the periodiec solutions
of Maxwell’s equations satisfying the boundary conditions; that is, they
are the solutions eorresponding to standing waves in the cavity. They
form a set, each member of which is characterized by a resonant fre-
quency w, (wave numbers k, = w, V/en) and a pair of vecter functions of
position &, and 3, satisfying the wave equations

V28, + k&, = 0,
vige, + ke, = 0

and the divergence conditions,

V.8 =0,
V-3 =0.
In addition, they satisfy the boundary conditions
n X & =0,
n-¥x, =0,
on the cavity walls. They form a normalized orthogonal set, in that they
satisfy
1E. U. Condon, Rev. Mod. Phys., 14, 341 (1942); J. Applied Phys., 12, 129 (1941.)
2 J. C. Slater, “Forced Oscillations and Cavity Resonators,” RL Report No. 188,
Dec. 31, 1942,

3 P. D. Crout, RL Report No. 626, Oct. 6, 1944.
4 A. Bafios RL Report No. 630, Nov. 3, 1944,
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/8.,-8de = 80
/ac,-scbdr = 8,

where U is the cavity volume. _§; and 3C, are related by the expressions

kogu =V X Gca,
—kadCs = V X &a.

I

The electromagnetic field in the cavity can be expanded in this set

of functions by
H= 2 kaq.a:’cay

D= Z k2gaa,

a

where the ¢, are scalar functions of the time. The coefficients in the
expansion have the dimensions of electric charge. The functions g,
corresponding to a normal mode k. are the amplitude functions of the
mode and are analogous to the coordinates of a dynamical problem.
They are the so-called normal coordinates of the system.

The dynamical equation of the system in terms of these normal
coordinates is the Lagrangian equation

d (T v
dt (55:) + a—qa =0, (21)
where T and V are the total kinetic and potential energies of the system.

The quantity T is identified as the magnetic energy, and V as the electric
energy of the system; that is,
u [ H*dr

“ Z k3ugs,

a

T =

O] = BOf =

and

V=i D2 ar

2¢
1 47 2
§; 2 ]La’an.

These have the form of stored energies in an inductance and a capaci-
tance, where
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La = uk?0,
e (22)
Co = Fv

In terms of these relations, 7 and V may be written as

1
=5 LGI?H
T 3 2 g

e 23
1V )

T 24/C,

<

The quantities L, and C, are the equivalent inductance and capacitance
respectively, of the mode k, and correspond to the inductance and capaci-
tance of the circuit of Fig. 7-11. From the relation ks = ws Vex, it may
be seen at once from Eq. (22) that

1
2 = .
“a = L.C. te G
Substitution of Eq. (22) in Eq. (20) results in ——
qa Normu.l-mo.de
Lujo + 5 =0, mesh in a lossless
C. cavity.

as the set of dynamical equations of the system. It is seen that ¢, is
the charge on the capacitance C, of the normal-mode mesh.

The frequency w, is the natural oscillation frequency of the mesh of
Fig. 7-11.  This is the frequency at which the mesh resonates, or “rings,”
after an exciting field has been removed. Tt is also the resonant fre-
quency of the mesh, that is, the frequency at which the stored electric
and magnetic energies are equal and the series reactance of the mesh
vanishes.

If the lossless cavity is excited by a coupling loop and coaxial line,
Lagrange’s equations are of the form

d (3T 14
a(@‘) tog =

where 6, is the electromotive force induced in the normal-mode mesh by
currents flowing in the loop. The loop is assumed to be so small that the
current distribution is uniform along the loop. Then,

di

b = Mo d_t",

where 7o is the loop current and M, the mutual inductance between the
loop and the normal-mode mesh, given by
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Mo, = pke 1 3Cs - ds. (24)
oop
The loop is seen to couple to all modes except when the integral of Eq. (24)
vanishes. If 3¢, is known, Mo, can be found by integrating Eq. (24)
over the loop area.
The introduction of loss in the cavity walls adds another term to
the dynamical equation, which then becomes

dfoT v . oF
a5+ 2
where F is given by
1 H?dS8
F = 5] 5 (26)

o being the conduetivity of the walls and 8 the skin depth. It is assumed
that the dissipation does not change the normal-mode fields &, and ..
It can be shown that Eq. (26) becomes

F = é’ z 2 Rabq.uq.b-
a b

The expansion coefficients R, may be written as

R _ \/wawaE_b
ab & ——
Qo
where
500
éb - ‘éfo "/ 5 - 30y 8. @7
For b = a,
1 1 ba
0. " 0. = 50 /SC?,dS, (28)
and
Raa = Ro = ‘%&?-
In terms of these relations, FEq. (25) becomes
. s . . di
Laqu + gy—a + Raga + E Rubqb = A{r)a d_to. (29)

b#a
This is now interpreted as an equivalent circuit of the following form.
Each normal mode is considered as a resonant mesh containing L,, C,,

R,, and V Ra in series and coupled through a mutual inductance M, to
e
b
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the loop. The mutual resistances R couple all meshes for which Eq.
(27) does not vanish.

It has been shown that Eq. (27) vanishes, for a cavity having the form
of a right circular ecylinder, for all modes that can be-
come simultaneously resonant. It is probable that

this is true also for other shapes. This fact con- EL’ C'E}
siderably simplifies the circuit representation of Eq. :

(29), since the mutual resistances vanish and the Moz, B2
meshes can be separated. Figure 7-12 is the repre- Lo %
]

MO] Rl

sentation of Eq. (29) under such conditions.

The frequencies w, are the resonant frequencies
of the meshes of Fig. 7-12 when the terminals are }
open-circuited, that is, the frequencies at which I
the series mesh reactances vanish and the stored elec- Fie. 712—Circuit
tric and magnetic energies are equal. The natural representation of a loop-
oscillation frequencies of the meshes are somewhat coupled cavity-

different, being given by

‘-":x = e \/1 - ‘}IQZ;
which for high @’s reduces to

, 1
W, = Wa — Wa gy
SQB

Most cavities have such high @’s that w; and w, differ at most by only a
few parts in 105.

Lot Myg L+ My Rq

Mg Eq
) 1 —
2, Li% L, Ca Za ~Myq Ca T
. T

Fig. 7-13.—Single normal-mode mesh of  Fia. 7-14.—Alternative equivalent circuit for
Fig. 7-12. a single normal-mode mesh.

The circuit of Fig. 7-12 can be transformed easily into the form'of Eq.
(17). Each normal-mode mesh is of the form of Fig. 7-13, which is
equivalent to the circuit of Fig. 7-14. The circuit of Fig. 7-14 has an
input impedance

2 2
Zo = julo + v M, 0 (30)
]C‘)La + Ra - J (JJC,,
y 3 2
= joLo+ oM 31)

L, (wz - w?+ J——Iz:w>
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where
- 1 ]
“s = L.C.
If Q, is defined by
wall,
Q. = o
Jo* M3,
Zs = JwLo + —‘-—ﬁ—,——
(wg — w? 4+ JZ—TG)
.o, ME M}
2 1" 0a 2 0a
. M3, il PE )
= jwL, — jw T + . ¢ .
) wﬁ‘—w2+‘%"ﬁ' Wl — w? 4 12

If the Q is higl, the last term is negligible [at r2sonance the third term is
wa(M2,/La)Qa and the last term is wa(MZ,/Ls)). Thus, to a very good
approximation for even moderate @’s,

)2 ‘M(z)a
g e il i Mia Jowa T,
a = Jwlio — Jw L. : : jwwu. (32)
wy — w? + 0

A comparison of this equation with Egs. (20) and (17) shows that the last
term may be represented as a shunt-resonant circuit.

ln

Tn
Fi1g. 7-15.—Representation of a loop-coupled cavity which is equivalent to Fig. 7-12.

Each of the various normal-mode meshes can be written in the form
of Eq. (32). Since in an impedance representation they appear in series,
the total input impedance is

. M3, . N
Z = jo Lo — E Sl R E R (33)
¢ w? — w? ¢

a
a e Q.

A comparison of Fqs. (33) and (20) shows that the summation can be
represented as a circuit of the form of Fig. 7-15, where

ME
]46 = ]«u - E"TUH'

@
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and the terms of Eqgs. (32) and (19) can be identified. This leads to the
following relations between the circuit elements of Figs. 712 and 7-15.

1 1
2 — _* ,

wi = . = L.C. (34a)

Q. = wal'aCs = w;EL 4 (34b)
2 2

To = w—“gl e, (34c)

_ M
ls = 7 (34d)

The relations of Eqs. (34) do not identify the magnitudes of the cir-
cuit elements of Fig. 7-15 but only
their interrelations. Clearly,
there would be a loss in generality
by putting each l, = L.. How-
ever, I, may be made proportional
to L,, in order to separate the mag-
nitudes of the elements of Fig.
7-15 from the amount of coupling.
This is accomplished by introduc-
ing ideal transformers and putting
Fig. 7-15 into the form of Fig.
7-16, where, without loss of generality, the inductances and capacitances
in Fig. 7-16 have been identified with those of Fig. 7-12. By use of Eqgs.
34), it is seen that the resistances in Fig. 716 are given by

, _ waMi, _ il
°” mR.  Ra.

The representations of Fig. 7-16 are often more convenient than those
of Fig. 7:15, since the circuit elements are determined by the normal-mode
meshes of Fig. 7-12 alone, not by
the coupling. The coupling is in-

F1g. 7-16.—Alternative representation of a
loop-coupled cavity.

(35)

8 2 By troduced by the ideal transformer,
c c c and the elements of Fig. 7-16 are

! 2 " not changed when the coupling
L, L, changes as they are in Fig. 7-15.

7-17—General representation of a
cavity-coupling system,

F1a.

7-7. Impedance Functions
Near Resonance.—If has been
shown, both by the introduction

of a small loss into the Foster representation and directly from the field
equations, that a single-line cavity-coupling system can be represented
by an equivalent circuit of the form of Fig. 7-15 or 7-17, where in special
cases one or more of the series or parallel elements may be degenerate.
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At frequencies near a particular resonance, these circuits are greatly
simplified, since the effects of all but the resonant mesh can be replaced
by nonresonant elements. The most general representations near
resonance are those of Figs. 7-18 and 7:19. In cavity-coupling systems

L
r R’, lC' C
R

F1G. 7-19.—Admittance representation of cavity-coupling system near a resonance.

near resonance the terms R’ and r’ are always very small, since they
correspond to off-resonance losses in the transmission line and coupling.
They will be considered to vanish.

A very convenient tool in the study and design of cavity-coupling
systems is the Smith impedance diagram. Consider a simple series
RLC-circuit terminating a transmis-
sion line of characteristic impedance
Z,. On aSmith impedance diagram,
the variation of input impedance of
the circuit with frequency describes a
locus like the circle (a) in Fig. 7-20.
At the real axis, 0 = wo = 1/+/LC,
the resonant frequency of the circuit.
If the circuit is shunted by a capaci-
tor, the locus is a circle such as (b) in
Fig. 7-20.' The new resonant fre-
quency oy is different from wo. The

¥i6. 7-20.—Loci of input impedances \ K X X
on a Smuth impedance diagram, for a radius of the new circle is also differ-

cavity-coupling system. ent. If the simple RLC-circuit is
shunted by an inductance, the circle will be shifted in a counterclockwise
direction.

1 This is obtained by transforming (a) to the admittance plane, which is accom-
plished by the reflection of (a) through the point Z,. The capacitive susceptance is
then added, which rotates the admittance circle. This circle is then reflected back
through Z, to obtain (b).
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It has been shown that the circuits of Fig. 7-18 are the most general
impedance representations for a cavity-coupling system near resonance.
Hence, loci such as (b) are the most
general impedance contours for a
cavity-coupling system near reso- +B

nance. {a)

Since a change of reference ter- w,
minals in the transmission line corre- 0 Yo [/ -
sponds, to a first approximation, to a 11_2

simple rotation of locus (b) around
Z,, it is evident that by a suitable -8
choice of reference terminals, any
cavity-coupling system can be
brought into the form of loeus (a). Fia. 7-21.—Locus ot input admittance
Hence, any cavity-coupling system %% Isir‘:‘git:;:&’::_mme chart, for a eavity-
near resonance behaves as a simple
series RLC-circuit at suitable terminals in the transmission line.

A discussion of the representations of Fig. 7-19 in terms of the Smith
admittance diagram proceeds in an exactly parallel fashion. The admit-

RG.
Lo+ My, Lo+ Mog
o T — T o
L, 381, R
Mog c, ¥

o T

Fig. 7-22.—Loop- Fia. 7-23.—Alternative representation of
coupled cavity near loop-coupled cavity near resonance of ath
resonance of ath mesh. mesh.

tance of a simple RLC shunt circuit describes a locus such as () in Fig.
7-21. The introduction of a series reactance rotates and changes the
scale of (@). As before, a suitable choice of terminals in the transmission
line can bring the locus of the most general representation of Fig. 719 to a
form such as (a), and hence the input admittance of any cavity-coupling
system near resonance behaves, at suitable terminals, as a simple shunt
RLC-circuit.

In the case of the loop-coupled cavity of Fig. 7-12, it is easy to derive
another near-resonance representation which is often more convenient
than the Foster representations of Figs. 12-18 and 12-19. It is clear that
near the resonant frequency w = w,, Fig. 7-12 reduces to the circuit of
Fig. 7-22, which may be represented as Fig. 7-23. It can be shown that
at a single frequency any lossless two-terminal-pair network can be
represented by a length of transmission line, an ideal transformer, and
a series reactance. Thus, Fig. 7-23 can be represented by the circuit of
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Fig. 7-24. It can be shown that the parameters of this representation
are given by

wl _ -1 wLo
i cot Zg’
WM(M
n = el
Zy cse (cot‘l e)Z%])
and
LI = L,, - nng,

at frequencies w near the frequency at which the circuit of Fig. 7:24 is
to be used, namely, w,. It is seen that the new circuit resonates at a

Ll
Zo !
1

- Rq
E ]
|
| |
L Ideal ] C

F1a. 7-24.—Another alternative representation of loop-coupled cavity near resonance of
ath mesh.

e [ >

frequency different from w, but near to it if L, 3> n®Le, which is the case
of small coupling. It is further seen that if the length of transmission
line chosen in the representation is the same kind as that physically
connected to the cavity, then new reference terminals may be chosen
such that the cavity can be rep-
resented by the lumped circuit of

TR r %, L' Fig. 725 ‘Thi§ ideal-transformer

7 representation is particularly con-

{ gg ! gR“ 7?Ca  venient for cavity-coupling sys-

{deal | 1 tems with several emerging
Co 72 Fe  transmission lines.

7-8. Coupling Coefficients and

Fia. 7-25.—Representations of loop- External Loading.——Suppose that

coupled cavity near resonance w, at pre-

the transmission line emanating

ferred terminal plane in transmission line. from a cavity-coupling system is

terminated in its characteristic impedance (admittance). At suitable
terminals, the equivalent circuit of the total system is as shown in Fig.
7-26. The @ of the cavity-coupling system is wol/r, when ot = 1/lc.
This is the unloaded @ of the system, @.,, the Q@ when terminals A are
short-circuited. The loaded @ of the circuit of Fig. 7-26 is wol/(r + Z,).
1f the loaded @ is denoted by @Q:, then

wol 1 1

r¥Zo 1, Zo 1 Z,
Qu * Qur

Qo =

Q.

wol
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and

0= a.(1+2) (36)

The coupling parameter is defined as 8 = Z,/r; which is also the input
conductance of the cavity-coupling system at the terminals of Fig. 7-26,
normalized to Yo, or

Z, i
- =g (37)

SN

Another convenient parameter is the external, or radiation, @ of the cir-
cuit. If Eq. (36) is written as

1
QL = H’ (38)
Q. Qu
then
L_1_ .6 _1_.7%

UL Qu Qu Qu wol.
The quantity Q./8 = wd/Zy is defined as Q,, the radiation Q.

|
Zy l

I ¢

]

A :

Fig. 7-26.—Equivalent circuit of cavity- Fi6. 7-27.—Equvalent circuit of cavity-

coupling system terminated in Z, at a par-  coupling system terminated in Y at a par-
ticular set of terminals. ticular set of terminals.

A similar development exists for the shunt-resonant case as shown in
Fig. 7-27. Here, Q. = RwoC where v} = 1/LC. The loaded @ is

woC _ 1 _ 1
1 1 Yo
BTV Rec Tl @t oa

Qv =

and the unloaded Q is

Q. = Qu(l + RYo) = Q. (1 + Zﬁ>

Here 8 = R/Z, = RY,. That is, 8 is the input impedance of the
cavity-coupling system at resonance, normalized to Z,.

It should be noted that if two cavity-coupling systems, one a series
representation and the other a shunt representation, are connected to
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identical transmission lines and have the same coupling coefficients,
then RY, = Zy/r, or R = Z%/r = 1/rY}.

T-9. General Formulas for @ Factors.—Thus far only the Q’s of
simple series- and shunt-resonant circuits have been treated. Fre-
quently, it is desired to find the @ of a more complex circuit, such as a
cavity-coupling system with arbitrary terminals. A general formula
for this is easily derived from the fundamental definition of @ which is

energy stored

Q=2 energy dissipated/cycle’
It can be shown [Sec. 5.3, Egs. (5.13) and (5.14)] that in general,
_ 4We — Wa)
N ee* !
AWy — Wg)

11*

B

X = 39)
where B and X are the shunt susceptance and series reactance at the
terminals, e and ¢ are terminal voltages and currents, and W and Wy are
the stored electric and magnetic energies in the system interior to the
terminals. It can also be shown [Sec. 523, Eqs. (5.140) and (5.141)]
that

6B  4(We+4 W)

EY ee* ’

X 4(Wy 4 W)

dw w*

(40)

If values for B or X at some reference terminals can be found and
dB/0w or X /3w can be evaluated, the total stored energy can be found
from Eq. (40). The @ can then be written

1 ,éB
1 3s
Q=2 energy dissipated/sec
1..,90X
- 11 %
= 2nf

energy dissipated/sec’

If, in addition, the shunt conductance G' or the series resistance R at
the terminals is known, the energy dissipated per second, $ee*G or $i7*R,
can be calculated and the @ may be written as

w 0B
¢ =265
w X
2R dw
Fquation (41) gives the general @ for a system whose impedunce or admit-
tance funetion is known at o given terminal paiv.

(41)
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The various Q’s thus far defined correspond to various choices of G
or R. To find Q., the loss (and hence the vaiue of G or R) is chosen to
correspond to the internally dissipated energy. To determine Q. or Q.,
the loss is chosen to correspond, respectively, to the externally dissi-
pated energy or to the total dissipation.

7-10. Iris-coupled, Short-circuited Waveguide.—The iris-coupled,
short-circuited waveguide is a particularly interesting example of a

single-line cavity-coupling system, because it can

be approached from several points of view and l 2,

illustrates many of the features of the preceding par- ——| —_

agraphs. =t —
In the first place, transmission-line methods may Plane

be used to construct the equivalent circuit. Con- F‘?G. 798 —1Tris-

sider 'the device of Fig. 7-28. The broken line in coupled short-circuited
. . . .. waveguide.

plane A represents a coupling hole or inductive iris

of inductive susceptance —7b. Assume that only one mode is propagated in

the waveguide. If the losses in the short-circuiting plate are neglected in

comparison with those in the waveguide of length I, then the input

impedance of the short-circuited waveguide (not including the iris) at

plane 4 is
Zy = Zy tanh («a + jB)I, (42)

where 8 = 2r/)\, and « is the attenuation constant. If the waveguide
is made of a metal that is a good conductor, so that « is small, and if the
length [ is not excessive, the @ will be large, ol ~ tanh al, and from Eq. (42)

_ al + jtan Bl
2= P T el tan 4

Near resonance, Eq. (43) is further simplified, since at resonance

_
L~ 2
where n =1, 2, - - - . Thus 8l = 7, and |tan 8] < 1. Since ol K 1
also,
Z, = Zo(al + j tan BI). (44)
This may be written in another form by considering tan 8! near resonance,
2
tan 8l =~ tan r—r% =—r%z)\f‘i£‘5, (45)
)\g xg S wo

where wo is the frequency at which tan 8l = 0 and 8 = w — wo. Sub-
stitution of Eq. (45) into Eq. (44) yields

2
Z, ~ Zo (al + j%f 5)- (46)

wo

This expression is seen to be of the same form as the input impedance of
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a series RLC-circuit for which
. 1
R + j2L& (47)

near resonance. Here § = w — wo, and wf = 1/LC. We can, therefore,
identify the terms in Eq. (46) as

n

R = Zy(al),
BAYE. (48)
L=5% o

The iris appears in shunt with this circuit so that the complete equivalent
circuit of the cavity-coupling system at plane A is that shown in Fig.
7-29. The iris susceptance is —jb = —j/wL.

w28
Z, R
Cc
Q L
F1a. 7-29.—Equivalent circuit of an iris- Fig. 7-30.—Equivalent series circuit for
coupled short-circuited waveguide nearreso-  an iris-coupled short-circuited waveguide

nance. Terminals are at the plane of the cavity.
1ris.

If the waveguide of Fig. 7-28 is terminated in its characteristic imped-
ance to the left of plane A, the impedance Z, appears across the terminals
of the equivalent circuit in Fig. 7-29. The loaded @ under these condi-
tions may be calculated. The sertes impedance of the parallel £, Z, com-
bination is jw£Zs/(Zs + jwg). For a high-Q system wf <« Z,, and this
series impedance is jwf + «282/Z,. The complete series circuit is that
of Fig. 7:30. The radiation @ is

_ woll + wol
@ = wiL?
Zy
b2 A2
~Tian (49)
for £ « L, from Eq. (48).
The loaded @ is given by
wiL?
RIS I
Q.. wo + wil  Zowol wol: (50)
or
LT3N 2 N
Q. brX r Al
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The unloaded @Q is
__T N
@ = 2(al) ¥
since wol/R is the unloaded @ of the circuit when the terminals of Fig.
7-29 are short-circuited.

It is seen by examination of Fig. 7-29 that resonance occurs for fre-
quencies somewhat less than ws, corresponding to nX, > 2I, or cavity
lengths somewhat shorter than n\,/2. This is also seen by examining
the total admittance at plane A which is

Yoo b1
Yo !V, al+jtangl
_ al _.b . tangl
= @+ tant gl Yy T (aDE T tan? B (51)
In the high-Q case [tan 8I|> ol. Thus Eq. (51) becomes
Yr_ el b . 1
Y, tanzgl 'V, ‘tan 8l (52)

At resonance, Yr/Y, is pure real. This occurs for negative cot gl, or I
slightly less than n\,/2. We see that the input conductance at resonance

18
Yy o b \?
<7> " fantp (7) ' (53)

For a cavity one-half wavelength long, in copper waveguide of dimen-
sions 1- by $-in. by 0.050-in. wall, at X = 3.2 ecm, o =~ 4 (10)~*, so that
an iris susceptance of b/Y, = 50 is required for critical coupling (that is,
for Yr/Y, = 1 at resonance).

We have seen in Sec. 7-9 that the @ of a circuit is given by
@ = (1/2@)w(dB/dw), where B is the total susceptance at the reference
plane and G the conductance. Now,

B _ 90BN _ 2w 9B _ 2mc 3\, 9B

Y% YN0 w on w O\ N,

Since M/A; = VI —(A/A)? and 97,/ = A}/\3, then

0B _ _ 2mcNj 9B _ N OB

© 8w w NN, ATAN,
Since 8 = 2r/\, and 98/\, = —2r/A, then
oB X\, 9B

(54)

w Wﬁ(ﬁ
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From Eq. (52),

-_— —_— — YG -
B=-b tan gl’
aB _ _ ab 2
5= s Yol(1 + cot? gl). (55)

Near resonance, cot? gl = b?/Y2>> 1 and I = \,/2; and from Eqs. (55)
and (54),
3B ab A b2 A2 b2 )\2 b2

"’_z__ﬁ TNy, T T gb"""xﬁy XY

o B Y, (56)

since b/ Y, > 1.!
For the radiation  the shunt conductance is Y, and so

wA2 (b ?
Q = Y (—Y_0> : (57)
This is seen to be identical with Eq. (49). For the unloaded @, the shunt
conductance is Yo(al) (b/Y0)?, and
T A2

@ = Sap N (58)

which is seen to agree with Eq. (50).

CAVITY-COUPLING SYSTEMS
WITH TWO EMERGENT TRANSMISSION LINES

As in the treatment of the single-line cavity-coupling system it is
convenient to consider the general representation theory that has been
o o derived for lossless n-mesh net-
1m, Zy Zy works and to show the equivalence
W of this representation to that de-

¢ rived from field theory.
il z? z? 7-11. General Representation
2 of Lossless Two-terminal-pair
E ng’ Networks.—It is not difficult to
] extend the reactance theorem to
[ | two-terminal-pair networks of =
llnn zm zZm I meshes.! It will suffice here
merely to state the result that
z™ such a two-terminal pair can be
represented as a series combina-
Fig. 7-31.—T-section representation Of two- tlon of T-sections or a pa.rallel
terminal-pair n-mesh Jossless network. combination of I-sections. The
T-section representation is shown in Fig. 7-31, where each Z,, Z,, Z, muy

LE. A. Guillemin, Communication Networks, Vol. 1I, Wiley New York, 1935;
Chap. 5, p. 216.
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be an inductance, a capacitance, or a parallel LC-element. The ideal
transformers are necessary to ensure the physical realizability of the
elements. Itisnot necessary that

the self- and transfer impedances Xo  Zg Zy X,

of the component T-sections have

coincident poles. z

At frequencies near a particu- ¢
lar resonant frequency the repre- X,
sentation of Fig. 7-31 simplifiesto o— e —0
that of Fig. 7-32, where the ele- (1) 1% ¥
ments X, X, X, represent the Fig. 7-32.—T-section representation of
contributions from all other poles two-terminal-pair lossless network near a

particular resonance.
at frequencies near the chosen res-
onant frequency. They are representable as inductances or capacitances
near the resonant frequency in question. The elements Z,, Z;, Z, consist
of L, C, or parallel LC-combina-
tions.

The reactance X, represents the
contributions of the other reso-
nances to the transfer impedance.
This is essentially the direct mutual
e 2) impedance of the two coupling sys-

Fig. 7-33.—A special T-representation tems and is almost always negligi-
of a two-terminal-pair lossless network near  ble; that is, only near resonance
resonant frequency wo. does the cavity transmit any ap-
preciable power. In the following sections, X. will be neglected.

Consider the special case where
X. and X, are inductances, the
ideal transformer has a ratio of
one to one, X, = 0, and Z,, Z,and

Li+Ly Ly+L € Ly+L" Ly+L

~L, -L,
Z, are parallel-resonant elements
at the frequency wo. This situa- o
tion is shown in Fig. 733, Fic. 7-3¢.—Network equivalent of Fig. 7-33
where near the resonant frequency wo = V' 1/LC.

1 1 1

2 = = = R
£1C1 L£2:CG2  L£4Cs

@y

The self- and transfer impedances of this network are

. jwiw (£ £ jw3 (L L .
Zn = juls + onwwé = -:2 ) ]w‘fg 1_-22 1) =+ jwLs,
- Joo (£2 + £3)  Jol(L2+ L£3) | .
Zse = juLs + & — o ¥~ g + jwly. (59)
¥ 2
Zia = -72"’b°w£3_ =~ jwiLs.

w — w?
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These expressions are of the same form as those for the network of Fig.
7-34. For this network,

Jw'Li
. L
Zy = juL, + ) Py
wy; — w
Jo’Li
) L (60)
Ly = jwly + ———
wf — w?
jwaLng
_ L
12 = o - o

where of = 1/LC, and L' + L"” = L. The equivalence is established by
identifying

L2
fl =L+ £,
L2
f = L9 + £, (61)
IL\L
}1 2 = J:a.

The network of Fig. 7:34 is easily put into a4 convenient form by repre-
senting each T-section asa combina-

& (’; o tion of alength of transmission line,

2, é I gg z, an ideal transformer, and a series in-

N o ductance. By this representation,
h'lm ml Tl it is transformed to the network of

Fig. 7:35.-—Network equivalent of Figs. . .
7-33 and 7-34 near resonance. Flg- 7-35.

The equivalence is es-
tablished by the equations

Jw(Ly + L) = —jZo cot Bily — jniZo cse Bils,
Jw(Li + L") = jwe’ — jniZ, cot By — jniZy esc By, (62)
—ijl = j”LlZo CSC ,81l1,

jw(Lz + Lb) = —]ZO cot ﬁglz - anZ(] CsC ,32[2,
jw(Lz + L”) = jw£” - ]'n;:’Zo cot ﬁzlg - j’ﬂgZo cse ,lez, (63)
—ijz = anZO Cse ﬁzlz,
where £ + £ = £.

The solutions for £” and £ are,

e =L — niL,

£ = L' — nila, (64)

In all practical cases, L' 3> niL, and L' > niLsy; therefore £ = L, and
the series circuit of Fig. 7-35 resonates at nearly the same frequency as
that of Fig. 7-33 or that of Fig. 7-34.
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It 1s clear from Fig. 7-35 that if the lines I, and I, are chosen to be
identical with the physical lines connected to the cavity, new terminals
may be chosen in the physical lines such that the cavity-coupling system
is simply a series LC-circuit coupled by ideal transformers at the input
and output terminals.

The transformation of various other forms of Fig. 7-32 to the form of
Fig. 7-35 will not be treated in detail. This transfermation can be
performed in all cases for which X, = 0.

7-12. Introduction of Loss.—Just as in the case
of the single line or single terminal pair, it is possible
to treat the small-loss approximation, in which loss
is introduced into each mesh of a purely reactive
network. It is clear that the general representation
of such a network is of the form of Fig. 7-31 with
resistive elements added to each Z,, Z;, and Z,.
Near a particular resonance this reduces to the form  Fra. 7:36.—Cavity
of Fig. 7-33 and finally to that of Fig. 7-35, where a ff,’lf; bwo loafp:(l)‘/‘flgfi
resistive element now appears in the resonant mesh.

This can be verified by a straightforward analysis following that shown
for the single-terminal-pair network.

7-13. Representation of a Cavity with Two Loop-coupled Lines.—The
loop-coupled cavity, like the single-line cavity-coupling system discussed
previously, can be treated rather exactly by field methods. A simple
extension of the single-loop case of Fig. 7-12 shows that Fig. 7-36 is the

Ly+M, L'+M, C R L"+M, L,+M,

-M, ~M,

O ©
(1) 2)
Fia. 7-37.—Circuit equivalent to Fig. 7-36 near we? = 1/LC.

equivalent circuit of a cavity with two loop-coupled lines at frequencies
near wf = 1/LC. No direct coupling between the loops L; and L, is
assumed. The circuit of Fig. 7-36 is easily transformed to that of Fig.
7-37 near the resonance w} = 1/LC, where L = L’ + L’’, This in turn
can be transformed to the form of Fig. 7-35 (including series resistance R),
where as before £ =~ L.

7:14. Transmission through a Two-line Cavity-coupling System.—
Let us consider a transmission system that includes a two-line cavity.
Let us suppose the terminals to be so chosen as to simplify Fig. 7-35, and
assume the generator and load impedances to be real and to be given by
Rqand Ry at these terminals. This circuit is shown in Fig. 7-38. Trans-
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forming the load and generator into the resonant mesh results in the cir-
cuit of Fig. 7-39. The unloaded @, which is obtained by putting
RG = RL = 0,

18 Qu = wol/R. The loaded @ is

w

Q=p ¥ niRe + niR.

from which

R '
Qu=QL(1+n%—I{+n§f)-

The input-and output-coupling parameters are defined, respectively, as

_ n%Zo
Br=—p=

_ n3Ze
B: = -p

Tt is customary to define the transmission through the cavity in terms
of 2 matched generator and load (i.e., R¢ = R = Zo). Under these

RG L C R 2
wgﬂ\_‘% nlzRG ; \ [ v RL
( ; nlE |
17 721 |
Fiag. 7-38.—Equivalent circuit of a F1a. 7-39.—Alternative form for the circuit
two-line cavity-coupling system at par- of Fig. 7-38.
ticular reference planes. The generator

and load impedances Rg and Rp are real
at these planes.

conditions, the impedance of the mesh of Fig. 7:39 is

z =R[(1+61+ﬂz)+jQu<i—9—°>]:

w

and the power into the load impedance is

Py = myZiI* = B.R|I?
E?
_ 6162'2—0
- .
(L4 81+ 8% + Qﬁ(i”— - ﬂ’)
wo w

The available power from the generator line is 1E?/Z, = P..
The transmission-loss function 7'(w) is defined as P1/P,, or

T(w) = 6.8 . (65)
(14 8+ 822 + Qi(w% - ﬂ)

w
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At resonance the transmission loss is

- 48182 .
Tl = 58, + 8o (66)
Dividing Eq. (65) by Eq. (66) has the result
T
T(w) = )
1+ (i"— ~-=
Wo w
or, putting w = wo + (Aw/2),
T{wa)

(67)

It is noted that T(w) = T(ws) (i.e., half-power points of transmission
occur) for Aw/we = 1/Q.. The quantity Aw is frequently called the
“bandwidth” of the cavity at the resonant frequency wo.



CHAPTER 8
RADIAL TRANSMISSION LINES

By N. MarcuviTz

8:1. The Equivalent-circuit Point of View.—The description of the
electromagnetic fields within a region of space enclosed by conducting
walls may be made in either of two ways. On the one hand, the given
region may be considered as a whole and its electromagnetic behavior:
described by the indication of its resonant properties and field behavior
as a function of frequency. In this “cavity” method of description, the
problem of determination of the fields within the region under considera-
tion is treated as an individual one, and no effort is made to apply the
results of its solution to other similar problems. On the other hand,
if the given region possesses a certain regularity of geometrical structure
in some direction—the direction of energy transmission—an alternative,
equally rigorous and more systematic treatment is possible. The given
region is regarded as a composite structure whose constituent subregions
are of two principal types. The fields in each of these subregions can
be described as a superposition of an infinite number of wave types or
modes characteristic of the cross-sectional shape of the subregion. In
the frequency range of interest it is found that in one type of subregion—
the transmission-line region—only a single dominant mode is necessary
to characterize completely the field behavior whereas in the other type
of subregion—the discontinuity region—the entire infinite set of modes
is necessary for the field description. The resulting complication in the
description of the discontinuity regions is not serious because as a conse-
quence of the rapid damping out of the higher modes the discontinuity
structure may be regarded as effectively lumped as far as all modes but
the dominant one are concerned. It is usually necessary, therefore, to
indicate only the dominant-mode discontinuity effects that are intro-
duced by such regions. The justification for such a simple procedure
lies in the fact that it is the dominant mode which determines the energy
transmission and the interaction characteristics of the over-all system.
Hence, only a knowledge of this mode is of interest.

The description of a composite structure in terms of transmission
regions and discontinuity or junction regions can be put into ordinary
electrical-network form. This is accomplished by the introduction of
voltage and current as measures of the transverse electric and magnetic

240
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fields, respectively, of the dominant mode. As a consequence, the
field behavior of the dominant mode in each of the constituent trans-
mission regions may be represented schematically by the voltage and
current behavior on a corresponding transmission line. The dominant-
mode discontinuity effects introduced by the junction regions are given
by specification of the relations between the voltages and currents at
the terminals of each junction. Such relations may be schematically
represented by means of an equivalent circuit. In this manner it is seen
that the energy-transmission characteristics of the original region are
described by the electrical characteristics of a system of distributed
transmission lines interconnected by lumped circuits. A knowledge of
the propagation constant and characteristic impedance of each trans-
mission line as well as the values of the lumped circuit parameters thus
suffices to give a complete description of the electromagnetic properties
of interest for the over-all system. In contradistinction to the cavity
description, it is to be noted that the results of many comparatively
simple transmission-line and junction problems are combined to give
this composite description.

8-2. Differences between Uniform and Nonuniform Regions.—The
circuit point of view for electromagnetic problems has been only
sketched, since it has been amply discussed elsewhere in this book for
uniform waveguide structures. Its application is not limited to uniform
structures, which are characterized almost everywhere by uniformity
of cross sections transverse to the direction of energy transmission.
The same point of view may be applied as well to certain nonuniform
structures that possess almost everywhere a type of symmetry in which
cross sections transverse to the transmission direction are geometrically
similar to one another rather than identical. Several examples of
structures of this sort are illustrated in Fig. 8-1.

The loaded cavity in Fig. 8-1a is an example of a structure containing
two nonuniform transmission regions, from 0 to r and from r to R,
separated by the junction region at r. The cross sections of the trans-
mission regions are cylindrical surfaces of differing radii. The tapered
waveguide section in Fig. 8-1b is a structure composed of two uniform
transmission regions separated by a nonuniform transmission region
from r to R with junction regions at r and B. In the nonuniform region
the cross sections perpendicular to.the direction of energy flow are seg-
ments of cylindrical surfaces of variable radii. In Fig. 8:1c is repre-
sented a spherical cavity containing a dielectric and composed of two
nonuniform transmission regions from 0 to r and from r to R. The
cros$ sections in each of these regions are spherical surfaces. In Fig.
8-1d is represented a conical antenna that is composed of nonuniform
transmission regions from r to B and R to « with junction regions at
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2 j
- \
| |
R r0r R 0 T R
(@) Cylindrical cavity (b) Tapered waveguide

(d) Conical antenna

(c) Dielectric in spherical cavity

() Tapered coaxial line

Fi1a. 8:1.—Structures containing nonuniform transmission lines.
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rand R. Figure 8 le represents a tapered section that is the coaxial-line
analogue of the waveguide taper in Fig. 8:1b. The cross sections in
the nonuniform transmission regions represented in Fig. 8-1¢c and d
are either complete spherical surfaces or segments thereof.

The subject matter of this chapter will be devoted principally te
the description of the electromagnetic fields that can exist within the
nonuniform transmission regions represented in Fig. 8-1a and b. This
field description will be carried through from an impedance point of view
in close analogy with the corresponding description of uniform trans-
mission regions, which for the sake of the analogy will also be briefly
treated. The impedance point of view stems from the existence of
traveling and standing waves that characterize the field behavior in
the transmission regions. The nature of these characteristic waves
may be found by investigation of solutions to the field equations or,
better, the wave equation, in a coordinate system appropriate to the
geometry of the transmission region in question.

For example, in a rectangular zyz coordinate system the wave equa-
tion determining the steady-state behavior of a typical field component
may be written in the form

2 2 2
‘Z—;ﬁ+<%+(%2+k2)u=0, n
where, as is customary, the complex amplitude u of the field variable is
assumed to have a time dependence exp (jwi) with w = kc denoting the
complex angular frequency and ¢ the speed of wave propagation. Let
the z-axis be chosen as the direction of energy transmission. In the
associated uniform transmission system the cross-sectional surfaces are
parallel to the zy-plane and identical with one another. Characteristic
modes or field patterns exist for each of which the operator shown within
parentheses in Eq. (1) is the square of a constant « called the mode
propagation constant or wave number (¢f. Chap. 2). For such modes
the wave equation may be rewritten as a one-dimensional transmission-
line equation,

c;_l; + k2 = 0, (2)

which determines the variation of the mode amplitude along the trans-
mission system. The two independent mathematical solutions to this
equation may be expressed as

cos 2, sin k2

and interpreted physically as standing waves; or alternatively, they may
be written in exponential form as

P+i (] . i
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and interpreted as traveling waves (¢f. Chap. 3). Since either set of
solutions suffices to specify completely the propagation in the z-direction,
the impedance description of uniform transmission lines must be expressed
in terms of these trigonometric functions.

Similarly, in a cylindrical r¢z coordinate system the wave equation
determining the complex amplitude u of one of the field components
may be written as

1o ou 1 e et L\
;a&(’ 5) t ( P )“' =0 ®)

In contradistinction to the rectangular case, every cylindrical field
component does not obey the same wave equation [Eq. (3)]; however,
only this equation will be considered for the moment. Let the direction
of energy transmission be chosen along the r-coordinate. In a trans-
mission system of this type the cross sections, which are ¢z cylindrical
surfaces, are no longer uniform but only similar. Examples of such
nonuniform transmission regions are shown in Fig. 8:-1a and b. Charac-
teristic modes still exist for such regions, but the operator within paren-
theses in Eq. (3) associated with each of the modes is a constant only
over the cross-sectional surfaces and varies along the direction of prop-
agation. The functional dependence of the mode constant on r has
been given in Sec. 2:13. Substitution of this result into the wave equa-
tion leads to the one-dimensional radial-transmission-line equation

10 ou . Y _
;3?<T5;> + (K ’T—2>u - 0; m = 0; 1) 21 H (‘l’)

which determines the variation of the mth mode amplitude along the
direction of energy propagation. As before, two independent mathe-
matical solutions to this equation exist; these are the Bessel and Neu-
mann functions of order m (Bessel functions of first and second kind,
respectively)

I ml(kr) Non(xr)

and, in analogy with the trigonometric functions encountered in the
rectangular geometry, may be interpreted physically as standing waves.
Alternatively a set of solutions may be written in terms of the two types
of mth-order Hankel functions (Bessel functions of the third kind)

Hr),  Hp(r),

and these similarly may be interpreted as ingoing and outgoing travel-
ing waves. Since the impedance description of radial transmission
lines must necessarily be based on these wave solutions, it is desirable to
list a few properties of the cylinder functions. These properties bear
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a strong resemblance to those of the trigonometric functions. For
example, the relation, or rather identity, among the three different
kinds of Bessel functions,
(D
HY(x) = Jn(z) £ jNa(2), (8)
is analogous to the exponential and trigonometrie relation
et = cos z + jsin z.

The resemblance is particularly close in the range z 3> m as can be
inferred from the asymptotic identity of Egs. (2) and (4) in this range.
In fact for z 3> m there obtains the asymptotic relation

n £ (+=2) +i(=-3)
N L AT (6a)

or, equivalently,

T mlz) = \/1% cos (x — 2m4+ 17r>;
Noz) ~ \/7% sin (x _ 2 4+ 1w>, (6b)

Physically these approximations imply that at large distances traveling
radial waves are identical with traveling plane waves save for the decrease
in amplitude of radial waves along the direction of propagation. This

J, (@) cos z
+1R +1

sin
Ny(=)

Bessel functions Trigonometric functions
F1a. 8-2.—Comparison of zero-order Bessel functions and trigonometric functions.
decrease is to be expected from the spreading of radial (cylindrical)
waves as they propagate, in contrast to the nonspreading of the constant-
amplitude plane waves. The variable amplitude as well as the quasi
periodicity of the Bessel functions is perhaps best illustrated in the
graphical comparison in Fig. 8-2 where the zero-order Bessel functions
are comparel with the corresponding trigonometric functions. The
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similarity of Bessel functions to trigonometric functions and their
interpretation as traveling and standing waves are emphasized by
writing them in the polar form

H@) = he* (") = (25 hem, (7a)
or, equivalently,
Jm(®) = hm coS (nm -~ %’) Nu(z) = hm sin <nm - %’) (7b)
from which it follows that -
ha@) = VIR FNED,  hale) = o2 foran1,

_mr . Na@) o
mm(x) = 5 + tan Jm(:c)’ () =z 7 for z > 1.

The amplitude h(z) and phase 5(z) of the Hankel functions of orders
zero and one are shown graphically in Fig. 8-3 and are tabulated in

-4

F1a. 8-:3.—The amplitude and phase of the Hankel function of order zero and one.

Table 8:1. The values of the Bessel functions Jo(z) and J1(x) are also
included in this table.!

Since in a radial transmission line the point r = 0 is a singular
point, it is not to be expected that the asymptotic small-argument
approximations (for z <K mm 2 1),

In(z) = 1—5—'(—;) y Na(z) = — Qn_;_l)'(%) , form 2 1,
2 8
Joz) ~ 1 —(g) No(@) ~ —gln%; m=o( ®

¥y=1781 ...,
are closely related to those of the trigonometric functions, although there
is a qualitative resemblance. The corresponding small-argument rela-

1 Cf. the tables in G. N. Watson, Theory of Bessel Functions, Cambridge, London,
1944,
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tions for the Hankel function may be obtained by use of the identity
of Eq. (5).

TaBLE 8-1.—VALUES oF THE BEsseL FuNcTIONS

z ho(z) hi(z) n0(x) m(z) Jo(z) Ji(z)
0 o 0 —90° 0° 1.0000 0.000
0.1 1.830 6.459 -57.0 0.5 0.9975 0.0499
0.2 1.466 3.325 —47.5 1.7 0.9900 0.0995
0.3 1.268 2.298 —-39.5 3.7 0.9776 0.1483
0.4 1.136 1.792 —32.3 6.3 0.9604 0.1960
0.5 1.038 1.491 —25.4 9.4 0.9385 0.2423
0.6 0.9628 1.293 -18.7 12.8 0.9120 0.2867
0.7 0.9016 1.151 —12.2 16.6 0.8812 0.3290
0.8 0.8507 1.045 -5.9 20.7 0.8463 0.3688
0.9 0.8075 0.9629 +0.4 24 .9 0.8075 0.4060
1.0 0.7703 0.8966 6.6 29 .4 0.7652 0.4401
1.1 0.7377 0.8421 12.7 34.0 0.7196 0.4709
1.2 0.7088 0.7963 18.8 38.7 0.6711 0.4983
1.3 0.6831 0.7572 24.8 43.6 0.6201 0.5220
1.4 0.6599 0.7234 30.8 48.5 0.5669 0.5420
1.5 0.6389 0.6938 36.8 53.5 0.5118 0.5579
1.6 0.6198 0.6675 42.7 58.6 0.4554 0.5699
1.7 0.6023 0.6441 48.6 63.8 0.3980 0.5778
1.8 0.5861 0.6230 54.6 69.0 0.3400 0.5815
1.9 0.5712 0.6040 60.4 74.2 0.2818 0.5812
2.0 0.5573 0.5866 66.3 79.5 0.2239 0.5767
2.2 0.5323 0.5560 78.0 89.1 0.1104 0.5560
2.4 0.5104 0.5298 89.7 101.0 0.0025 0.5202
2.6 0.4910 0.5071 101.4 111.8 —0.0968 0.4708
2.8 0.4736 0.4872 113.0 122.8 —0.1850 0.4097
3.0 0.4579 0.4694 124.6 133.8 —0.2601 0.3391
3.5 0.4245 0.4326 153.6 161.5 —0.3801 0.1374
4.0 0.3975 0.4034 182.4 189 .4 —0.3972 —0.0660
5.0 0.3560 0.3594 240.1 245.7 —0.1776 —0.3276
6.0 0.3252 0.3274 207.6 302.3 0.1507 —0.2767
7.0 0.3012 0.3027 355.1 359.1 0.3001 —0.0047
8.0 0.2818 0.2829 412.5 416.0 0.1717 0.2346
9.0 0.2658 0.2666 469.9 - 473.0 —0.0903 0.2453
10.0 0.2522 0.2528 527.2 530.1 —0.2459 0.0435

Several important differential properties that will prove useful later

5
- 3

L
1
™ dx

T n@] = = Jmna(a), 3‘1[' Nw@)] = = Noa®),

8
3
il

- L anta(@)) = Juate), [N (@] = Nova(a), ©

Tn@NL&) = Na(@)J @) = =
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where the prime denotes the derivative with respect to the argument.
Equations (9) are also quite similar to the corresponding trigonometric
relations

—cosx = — sinx
dz ’
d

dx

sin £ = CoS T,

cos z - sin ¢ — sin:r,(%cosx =1,
particularly for large arguments where the 2™ and z7™ factors of Egs. (9)
may be omitted in first approximation.

With this brief discussion of the characteristic waves in uniform and
radial transmission lines it is now desirable to turn to the impedance
description of such transmission systems. An impedance description
exists for every characteristic mode. In the following however, this
will be carried out only for the lowest or dominant mode, since this mode
is usually the most important for practical applications. The treatment
of any other mode in terms of impedances is carried through in an exactly
similar manner. As a preliminary to the impedance description of
nonuniform radial transmission systems, that of the uniform line will
be reviewed briefly (¢f. Chap. 3). The corresponding treatment of radial
lines is developed in close analogy thereto.

8-3. Impedance Description of Uniform Lines.—In Chaps. 2 and 3 the
electromagnetic field within nondissipative uniform transmission sys-
tems, such as linear waveguides, was described in terms of a superposi~
tion of characteristic modes. The introduction of a voltage V and a
current I as measures of the transverse electric field E, and magnetic
field H, associated with the dominant mode was made quantitative by
the definitions

Et(xyyyz) _V(Z)d)(l,y),
Hl(xyy:z) I(Z)( X (P(x,y),
with { a unit vector in the direction of propagation 2, and @ a transverse

vector function characteristic of the mode. In the steady state, the
voltage and current were shown to satisfy the transmission-line equations

av )

’d? = — ]KZ()I,

% = —jxIaV, (10)
K2 - —‘Yﬂy

where « was defined as the propagation constant and Y, = 1/Z, as the
characteristic admittance of the dominant-mode transmission line. A
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section of line is represented schematically in Fig. 8-4 which also shows
the positive directions of V and I. The constant « is expressed in terms

of the angular frequency w and cutoff wave number &, of the dominant
mode by

2
x2=<‘—:> — k2 =k — R (1

Since both the voltage and current satisfy equations similar to Eq. (4),
solutions to Eq. (10) can be written in terms of standing waves as

V(z) = A cos kz + B sin «z, }

JZoI(z) = A sin k2 — B cos xz. (12)

The application of the boundary conditions that the voltage and current
at z = z are V(20) and I(zo) leads to

V() = V(zo) cos k(2o — 2) + jZoI(20) sin « (20 — 2), j

I(z) = I(zo) cos k(20 — 2) + 7YV (zo) sin «k(zg — 2) (13)

as the complete solution for the behavior of the dominant mode. Since
many of the quantities of physical interest depend only on the ratio of

1z) I(zp)
—p ——lie
T X v
| | |
: Zo | —_— 2
Ve | | Vizo)
) |
1 !
2 2g

Fig. 8-4.—Section of a uniform transmission line showing positive directions of I and V.

the voltage to the current, it is expedient to define relative admittances
in the positive direction by

1 Iz) _ Y@
Y V(@ Y,

e = and Y =g e TGy,

Yo Vizo) Yo

and by division to convert the solution, Egs. (13), into the fundamental
admittance relation
, _J 7+ Y'(zq) cot k(2o — 2)
Y (Z) - cot K(Zo _ 2) +]‘Y’(Zo)' (15)

Equation (15) may be employed for admittance calculations in either of
two ways: analytically with the aid of cotangent tables or graphically
with the aid of transmission-line charts (¢f. Sec. 3-6).

An alternative solution to Egs. (10) may be given on a traveling-wave
basis as
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1(z) = Ce/* + Detie,
Zy(z) = Cei= — Detie,

where C' and D represent the complex amplitudes of the incident and
reflected voltage waves at z = 0. Again it is desirable to introduce a
ratio, in this case the ratio of the amplitudes of the reflected and incident,
voltage waves at any point z (or 2,). This quantity is called the reflection
coefficient

(16)

r(z) = 16) i or T(z9) = »’é; €2z,

By the elimination of D/C there is obtained the fundamentaltrans-
mission-line relation
T(z) = T'(zp)etetz—, 17

From Eq. (16) it is seen that the relation between the reflection coef-
ficient and relative admittance at any point 2 is

1= Y'(2)
TIFYR)

Equations (17) and (18) provide a method alternative to that of Eq. (15)
of relating admittances at two different points on a transmission line.

With this brief review of the description of the uniform transmission
regions of an electromagnetic system, it is now appropriate to turn to
the treatment of the discontinuity regions. A discontinuity region is
described by indication of the relations between the voltages and currents
at the transmission lines connected to its terminals. For the case of
two such terminal lines, distinguished by subsecripts 1 and 2, the voltage-
current relations are linear and of the form

Il = Yuvl + Ysz, }
I, = Yw_Vx 4 YooV

I'(2) (18)

(19)

The positive directions of voltage and current are chosen as in the equiva-

I I lent circuit of Fig. 8-5 which is a
—_ Y, —Ze  schematic representation of Egs.
° MWW ©  (19). Since the principal interest
1 l in this chapter is in transmission
v Nyt Lk, v, systems, the discussion of the prop-

erties of the circuit parameters ¥,
O . -0 sz, Yzz will be omitted. It is as-

Fia. 8-5.—Equivalent circuit of a discon- gymed that these parameters are
tinuity region. . .
known either from theoretical com-
putations or from experimental measurements on the discontinuity.
In connection with circuit descriptions of discontinuities, it is useful
to observe that equivalent-circuit descriptions exist for transmission
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regions as well. This may be seen by rewriting Eqgs. (13) as

I(z) = —jYqcot x(zo — 2)V(2) — jY, csc k(2o — 2)[— V(20)], (20)
I(z9) = —jYocsck(zo — 2)V(2) — jY, cot k(20 — 2)[— V(z0)],

where — V(zo) 1s chosen as the positive voltage at zo in accord with the
sign convention of Egs. (19). Comparison of Eqgs. (19) and (20) then
shows that the equivalent-circuit parameters of a length (z — z) of
transmission line are

Yi= Y = —jY,cot «(zo — 2),

Yo —jYq ese k(2o — 2),
Yu—Ye=Yn—Yn= ‘—jYO tan 5(202;2)
In addition to the knowledge of the relation between the admittances
at two different points of a transmission line, that of the frequency
derivative of the relative admittance is important. This relation may

be obtained simply for a uniform line by forming first the differential
of the logarithm of Eqs. (17) and (18) as

AT'(2) _ AT(z0)

(1)

TG) ~ Ty TI2( — 2)bx, (22a)
and

AT(z) _ _  2AY'(2)

Tz) 1+ Y @F (220)

Equation (22a) states that on a change in frequency the resulting relative
change in the input reflection coefficient of a nondissipative uniform line
differs from that of the output reflection coefficient only by a phase change
of value twice the change in the electrical length of the line. Rewriting
Eq. (220) in terms of admittance with the aid of Eq. (22b), one finds that

. dY’(z) ay’(zo)
dk . Tk
AR LO) = jk(20 — 2) + T VT []'Y’(ZO)P" (23a)

and the desired relation is finally obtained by observing from Eq. (11)

that
2 2
K K w K

and therefore Eq. (23a) may be rewritten as

o a¥’z)
dlnw AE\ dlnw
T+ Y erE (;) (zg — 2) + TT LY @F (23b)

1t should be emphasized that Kq. (23b) determines the frequency deriva-
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tive of the relative admittance. If the characteristic admittance Y, varies
with frequency, the following relation should be employed to distinguish
between the frequency derivatives of the admittance Y (z) and relative
admittance Y’'(z2)

Y@ o dY'@) . . dY
dhe - Vdme TV®ma (24)

8-4. Field Representation by Characteristic Modes.—In the following
sections the electromagnetic fields within radial transmission regions' of
cylindrical shape will be described on an impedance—transmission-line
basis in a manner similar to that employed in the preceding sections. A

F4
l
2 N | 74 A ) |
|
| b
|
I
| . AN | 74 I/ al
!
L7 —
r=0
Top view Side view

Fic. B-6.—Coordinates for the cylindrical region between two disks.

typical example of a radial transmission system is the cylindrical region
between two annular disks as shown in Fig. 8-6. The discussion starts
from a transmission-line form of the fundamental Maxwell equations and
proceeds to a characteristic-mode representation of the fields and thence
to a detailed treatment of the impedance (or admittance) properties of
several of the lowest modes. As indicated in Fig. 86, an réz polar
coordinate system is most suitable for the description of the field. In
this coordinate system the electric field E and magnetic field H are given
implicitly, for the steady state of angular frequency w, by

10E, 0B, . 10H, 0H, _
v a6 op — TdewHn = P PR L
9E, OB, . oH, oH. .
9z or Jw“H“” 9z ar Jwekss, (25)
10(rE,) 10E, . 19(-H,) 10H, .
v oar T rae — TderHs LT T g = dwek.

These equations may be converted to a form that emphasizes the radial
transmission character of a cylindrical region by eliminating the com-

1 Cf 8. A. Shelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943; Ramo
and Whinnery, Fields and Waves in Modern Radio, Wiley, New York, 1944,
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ponents of E and H in the direction of propagation r. The resulting
transmission-line equations for the remaining transverse components
then become

0B [ 1(19H. o,
Frie —Jkr[ Ho + P(?Waz 8z* >] (260)
L9 . 1(19H, 10H,
; 5 (TE¢) = _-Jk{ [][z + ké (,-2 T)—qgf ; m>:|]
and
o, B - i 1 62E¢ _ 1 9%E,
= = —]k'q [Edb + Ez (W ; d¢ 62>:|, (26b)

16(7'H¢) _ . _ 1 1 62E¢ _ 1 62E,
r = | Bt G\Gage: " aet )

where k = wv/ue and { = 1/n = \/u/e is the intrinsic impedance of the
medium. It is evident from the first of Egs. (25) that the knowledge
of the transverse field components suffices to determine the radial com-
ponents; the latter will therefore not be considered in what follows.

Since the boundary conditions on the periphery of the cross-sectional
¢z-surfaces of the transmission region are known, the transverse behavior
of the field can be found. This immediately suggests the possibility of
finding a transverse-field representation, in terms of characteristic modes,
that replaces the transverse derivatives in Eqs. (26) by known expres-
sions. The virtue of this procedure is that the field problem is thereby
reduced to a one-dimensional transmission-line problem. For the case
of uniform regions, the appropriate field representation is expressed in
terms of transverse vector modes of two types: the E-modes derivable
from a single component of E in the direction of propagation and the
H-modes derivable from a single component of H in the direction of
propagation. For radial transmission regions, on the other hand, no
similar vector decomposition into E- and H-modes exists. A scalar mode
representation does however exist, and in fact it is related to that employed
in Sec. 2:13 for uniform lines. The representation applicable to a radial
transmission region of height b (Fig. 8-G) consists, for the case in which
I1. vanishes, of u superposition of E-type modes

&V nr
E, = — ™ tcos o z cos mo,
- b b
&V fm\nr . nr . o
E, = — 2~ =\ ~-)sin ~- z sin mo. (27a)
kb ‘ b b
!
nr
Hy = em o5 cos — z cos m
¢ ™ 2rr b ¢

and for the case in which E, vanishes, of a superposition of H-tvpe modes
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”
H, = e"l{’ sin n_b1rz sin me,
H, = el (@)(@) cos 7 2 cos (27b)
* = \r \b b mé)
" B
E, = €n g SIN - 2 sin me,

together with the corresponding modes of opposite ¢-polarization. In the
above,

1 = (mn), =1, forn = 0,

m=20,1,2 ---, “l=2 forn =2 1,
2

n=012---, K2=k2—<%”>-

The mode amplitudes V; and I;, called the mode voltage and current,
respectively, are functions only of r and have been so defined that the
average power flow in the positive r-direction is 3+ Re (VI}). After
substitution of the mode forms (27a) or (27b) into the Eqs. (26) and
evaluation of the transverse derivatives therein, there are obtained the
transmission-line equations

d .
d—Vl = —jal.l,
"
(28a)
i vy
3y = YT,
where
m\® nr\? m\’
and
Z = 1_ ;K_z bem for the E-type modes
Y, ki 2mre, ’
1k 2mre,
Z, = v = {3 b for the H-type modes. {28¢)

The superscript distinguishing the mode type has been omitted, since
the equations for both mode types are of the same form. A field represen-
tation similar to this one can also be given if the region has an angular
aperture less than 2x. Such a representation differs from that in Eqs.
(27) and (28) only in the dependence on ¢ and in the value of the ampli-
tude normalization required to maintain the power definition.

If neither E, nor H, vanishes, the transverse field may be represented
as a superposition of the mode fields in Eqs. (27a) and (27b). In this
case the two types of modes can no longer be distinguished on the basis
of vector orthogonality as in the uniform line. Nevertheless, the four
voltage and current amplitudes of the mixed nmth mode satisfy Iigs. (28)



Skc. 8-4] CHARACTERISTIC MODES 255

and can be determined at any point r from the four scalar components of
the total transverse field at r.

As in the corresponding case of the uniform line, Egs. (28) constitute
the basis for the designation of V; and I, as the mode voltage and current.
Concomitantly they also provide the basis for the introduction of a
transmission line of propagation constant «; and characteristic impedance
Z; to represent the variation of voltage and current along the direction of
propagation. The transmission line so defined differs from that for a
uniform region in that both the propagation constant and characteristic
impedance are variable. This variability of the line parameters must he
taken into account when eliminating I} from Egs. (28a) by dlfferentla,tl%
in order to obtain the wave equation

1d( av; ‘
V(-2 +avi=o, 2

v
obeyed by the voltage of an E-type mode. The current I} of an H-type
mode satisfies the same equation. However both I} and V}’ obey morg
complicated wave equations and are best obtained from Vj or I respec-
tively, by use of Eqs. (28).

The waves defined by Eq. (29) have already been treated in Sec. 8- 2{

There it was shown that outgoing traveling waves were of the form o

g .
H®(xr),  where s? = k? — (%) . '
| S
In a nondissipative uniform line the exponential waves corresponding
to these are classified as propagating or nonpropagating dependirg on
whether the wave amplitudes remain constant or decrease rapidly
with the distance traveled. The nature of a wave is determined simply
from the sign of the square of the corresponding propagation constapnt; a

positive sign indicates a propagating wave, and a negative sign an attenu- .

ating wave. For a radial line the situation is somewhat more complex.
(1) There is an over-all decrease in amplitude of radial waves due to
cylindrical spreading, but this decrease will not serve as a basis for distin-
guishing the various waves. (2) The square of the propagation constant «
is really not a constant, as can be seen from Eq. (28b). The sign may be
positive for large r and negative for small r. No difficulty as to classifica-
tion arises if «? is either everywhere positive or everywhere negative, for
this implies that « is either positive real or negative imaginary. Hence
from Egs. (6a) the corresponding waves are either propagating or non-
propagating. On the other hand, if «f has a variable sign, there is an
apparent difficulty that is, however, easily resolvable. Since for this
case « is necessarily positive and m is equal to or greater than 1, it follows
from Eq. (6a) that in the range «r > m (i.e., «? positive) the wave is

[PNINIPEEEY-
o i

e —

" e cad

Lo _n [
be —u e
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propagating. Conversely it is seen from Eq. (8) that for «r < m the
waves damp out as (xr)~™. Thus the propagating or nonpropagating
nature of a radial wave is determined from the sign of the square of the
propagation constant x; exactly as in the case of a uniform wave. In
the case of radial waves it should be noted that the same mode may be
both propagating and nonpropagating, the propagation being character-
istic of the wave behavior at large distances.

Uniform regions are most suitable as transmission systems if only one
mode is capable of propagating. This is likewise true for radial regions,
and therefore the following section will be concerned with the detailed
discussion of the transmission properties of a radial region in which only
one E- or H-type mode is propagating.

8-5. Impedance Description of a Radial Line.—A typical radial region
to be considered is that shown in Fig. 8-6. The applicability of a simple
transmission-line description to such a region is subject to the restrictions
that only one mode propagate and that no higher-mode interactions exist
between any geometrical discontinuities in the region. These restrictions
are not essential and may be taken into account by employing a multiple
transmission-line description although this will not be done in this
chapter. The simple transmission-line description for the case of only
the lowest E-type mode propagating is based on the line equations

dv

E = _)kZUIy
dI R
oy, (30)

1 uw b
%—K—Jnﬁ
obtained by setting m = n = 0 in Eqgs. (28). The field structure of this
mode is circularly symmetric about the z-axis; the electric field has only
one component parallel to the z-axis; and the magnetic field lines are
circles concentric with the z-axis.

The transmission-line description corresponding to the case where
only the lowest symmetrical H-type mode can propagate is closely
related to that for the E-type mode. The field structure of this mode
consists, for an infinite guide height b, of a magnetic field with only a
z-component and a circular electric field concentric with the z-axis. A
duality thus exists between the E- and H-tvpe modes, since the (negative)
electric field and the magnetic field of one are replaced, respectively, by
the magnetic field and electric field of the other. This correspondence or
duality between the two mode types is an illustration of Babinet's princi-
ple discussed in Chap. 2. The point of adducing such a principle is that
a field situation for one type of mode can be deduced from that of the
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other type merely by the duality replacements. In the transmission-line
description, duality is manifested by the replacement of V, I, u, ¢, Z, and
Y of the one mode by I, V, ¢, u, Y, and Z of the other. The line equations
for the lowest H-type mode are therefore identical with the line equations
[Eqs. (30)] for the E-type mode. The duality is, however, an idealiza-
tion that is possible only if the height of the transmission structure is
infinite. For a finite height b the z-component of the magnetic field of
the H-type mode must vanish on the planes that constitute the cross-
sectional boundaries. Since the magnetic field is divergenceless, this
implies the existence of a radial component of the magnetic field. Dual-
ity between the fields of the two modes is thus no longer possible. More-
over, because of the variability of the magnetic field along the z-direction,
n cannot be set equal to zero in the general line equations [Eqs. (28)]. As
a result the transmission-line equations for the lowest symmetrical
H-type mode (i.e., m = 0) become

av _ . Y jukdwr

@ = T, Z°—7_\/;ET’

dI ar\’
=K (7)

lﬁ' —]K YoV

From a comparison of Eqs. (30) and (31) it is again apparent that duality,
in the above-mentioned sense, no longer exists because of the different
characteristic impedances and propagation constants of the two modes.
A modified and useful form of duality, however, still obtains. If V, Z,I,
and & of the E-type mode are replaced by I, Y,V, and « of the H-type
mode, the line Eqgs. (30) go over into Eqs. (31) and conversely. Thisis
easily seen if the line equations are rewritten in the forms

@31)

E-type H-type
WV jpzer, V)L 0D iy
dr ’ dr r !
(ZOI) . dI (32)
(ZDI) + '—']kV, E = —_]KY()V

As a consequence of this modified duality, all relative impedance relations
of the one mode become identical with the relative admittance relations
of the other mode provided the propagation constant k is associated with
the E-type and « with the H-type relations.

In both the E- and H-type modes the voltage V and current I are
measures of the intensities of the electric and magnetic fields associated
with the propagating mode. This fact is indicated quantitatively in
Egs. (27a) and (27b). The positive directions of V and I may be shown
schematically by a transmission-line diagram of the usual type as in
Fig. 8 7. This schematic representation of the behavior of the lowest
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E- (or H-) type mode differs from the corresponding representation for
the uniform line in that the characteristic impedance. being variable,
must be specified at each reference plane

I(r) I(ry)
— —_—te
T 1
i k !
| 1
} Zy(r) Zo(ry) | e o §
Vir) ! ] V(,-o)
| {x) |
i - 1
F1a. 8-7.—A portion of a radial transmission line with positive directions indicated for T
and V.

With this preliminary discussion of the interrelations between the
dominant E- and H-type modes, it is now appropriate to treat the trans-
mission and impedance properties of the individual modes. The modified
duality existing between these modes makes necessary the consideration
of only one mode—the lowest E-type is chosen in the following—since
the properties of the other are easily obtained by the duality replace-
ments. Transmission and impedance properties are readily deduced by
consideration of the wave-equation form of the line equations. The wave
equation for the lowest E-type mode, obtained by eliminating I from
Eqs. (30), is
%%(r ‘fi—l:) + BV = 0. (33)

The waves defined by this equation have been discussed in Sec. 8-2.
The standing-wave solution to Eq. (33) was there shown to be of the form
V(r) = AJo(kr) + BN(kr). (34a)
With the aid of Eqs. (30) and the differential properties of the Bessel
functions, the solution for the current I can be written as
JZo(r)I(r) = AJ:(kr) + BN(kr). (34b)

The arbitrary constants 4 and B can be evaluated from the boundary
condition that at r = r,, the voltage and current are V(ry) and I(ry). In
terms of these quantities Eqs. (34) become

J1No — NioJo NooJo — JoNo |
2

+ §Zo(ro)I(ro) 3

7I'kT0 ‘II'I('To

Zo(MI(r) = Zo(ro)I(ro) [M] — jV(ro) [‘M

V(r) = V(ro)

(35)

2 2 ’

‘n’k"‘o 11'1(‘7‘0
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where
Jo(kr) = Jo, Jo(kro) = Joo, J1(kre) = J 1o,

and similarly for the N’s.

As in the case of the uniform line it is convenient to define relative
admittances at the radii » and r, as

Zo(nI(r) _ Y(r)

Zo(To)I(Tn) . Y(To)
Vi) Yoy

Vire)  Yo(ro)

Because of the lack of a unique characteristic impedance for a radial
line, it is important to emphasize that relative admittance is here defined
as the ratio of the absolute admittance at a radius to the characteristic
admittance at the same radius. Incidentally, the choice of sign con-
vention for ¥ and I implies that relative admittance is positive in the
direction of increasing radius.

The fundamental wave solutions [Eqs. (35)] can be rewritten as an
admittance relation that gives the relative admittance at any radius »
in terms of that at any other radius r,. This relation, obtained by
division of Eqgs. (35) by one another, may be expressed as

Y'(r) =

and Y'(ro) =

(36)

vy I Ve ) ctay)
Y0 = G + 7 oy’ S
where
_J]Noo—NlJOO_ 1
et(z,y) = JoNoo — NoJoo  tn (I,y)’
_J10N0—N10J0_ 1
Ct(x’y) N JiNio — NJiw Tn (I;y)’ ®8)
JoNow — N
o) = TN = ()
and

x = kr, y = kro.

The ct and Ct functions are asymmetrical in x and y and may be termed
the small and large radial cotangents, respectively; their reciprocals tn
and Tn may be called correspondingly the small and large radial tangent
functions. The nature of the asymmetry of these functions is made
evident in the relation

which, in addition, may be employed to obtain alternative forms for Eq.
(37). In fact this relation implies that Eq. (37) can be expressed in
terms of only two of the radial functions rather than in terms of the three
employed. Several practical applications appear simpler, however, if
the three functions ct, Ct, and { are used as above. These functions are
plotted in the graphs of Figs. 8-8 to 8:10 with the electrical length (y — z)



[Sec. 8.5

RADIAL TRANSMISSION LINES

260

ReBnas]

4
.

=2

va

2

1)

~ctizy)

-4

~C%ar2348 80

FiG. 8-8a.

TEITIIT

T

Imwa
imna:
Tt
Imm

v a1
=] 351

-ct(zy)

-2

Fia. 8-8b.

{a) Values of et (z, y) for y/z > 1.

(b) Values of ct (z, y) for y/z < 1.

Fia, 8-8.



261

IMPEDANCE DESCRIPTION OF A RADIAL LINE

Sec. 8-5]

FUNIS SUN PrwEe S T I EwEE N SETRE D
! 1 Eaw H isue! | bt 1
i " 1
T
= T
T
mug L T
] HHHEIN 1
H
1 s !
H t =3
A4 N
T
T 1 1
T 1 ma
; R SEE, \ H
HH
fae A
s % T oL it
qu EadBa o 8 LY
B TIEOE H .
sEf] ecesates i
| T T
: iats M
JaBER ey BERSNEN] \]
o
A 2
e CH X
S L
EEwEymewn e uE FER PR
T
o 7
SugEEggnw: = -
T L]
il : | ]
insawus K2
SpRgR TuARE panE 3 =PV
e T B den
i i
PO n
5
O e
Ltd e I T
B THIE
I anu m T I
LT
PR U
T
t
i 1T
1 1T
T+ -
I i It
o
a2
)
c
i

F1a, 8-9a.

I | 1
Il
T
N HHH !
FyrBEs) i T
s oo
pusmNug T T I
T
B 1 1SS RES NN
- [t Il
may
ITH
i
sanne T
i
LT
axSsExus: 1 -
T
1
P ~
phas 8
Eaaw n L]
1 -
: w
- o
: e |
4t T T~ 2
Feiisaapaennss: T S
+ indwau:
R 8
T T T %r S Y 1
F ) L . I
Ry - | SR AR ST S g A% I
i i N
sheses B BT
Y SRR
HHH Eeva S NSRS T
um 0 T SRR
H o !
sesmel | Sasaateen HHE M,
FrrTt ingumEmy
cE T R N
FHH - »a
EEES SRR t
HH H }
s T m
I Tt 1
T I LT
11 1
H 1
1
1

Fia. 8-9b.

Fiu. 89.—(a) Values of Tn {(z, ) for y/z > 1,

(b) Values of Tn (r, ) for w/z < 1



262 RADIAL TRANSMISSION LINES {SEc. 8-5

as the independent variable and the curvature ratio y/z as a parameter.
The curves of Figs. 8:8a and 8-9a are for y/x greater than unity and apply
to the case where the input terminals are at a smaller radius than the
output terminals of the transmission line. Conversely Figs. 8-8b and
89b apply to the case where the input terminals are at a larger radius
than the output terminals. The symmetry in £ and y of the [ function
permits the use of the single Fig. 8-10 for its representation.
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Since the radial functions become infinite at certain values of their
arguments, it is difficult to plot a complete range of their functional
values. Thus in the graphs of Figs. 88 to 810 it is to be noted that
values above 6 are not shown. The abscissas, however, corresponding
to infinite functional values are indicated by short dashed vertical lines
in the various figures. The hiatus in plotted values constitutes a definite
restriction on the use of the graphs, particularly for impedance calcula-
tions on radial lines of approximately one-half wavelength. In this
connection it should be pointed out that by the use of the identity of
Eq. (39), large values of the Tn function may be found from the graphs
of the ct and ¢ functions. A more complete table of values of the radial
functions will be found in the Waveguide Handbook.

The extension of the graphs to include large values of line length
y — x is rendered unnecessary because of the asymptotic identity of
the radial and trigonometric functions in the range of large = and y.
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This identity may be seen by employing the asymptotic expressions
[Eq. (6b)] for the Bessel functions in the definitions [Eq. (38)] with the
result that for z and y > 1

cos(x - 371—") sin(y - 77;) —sin(x — %{) cos( — %)
ct (z,y)
cos( — 77;) sin(y - g) —sin( - Z) cos( — %)

cot (y — z),

3\ . T . 3r T
cos( — —) Sln(x — —) —s1n< — —) cos(x — —)
4 4 4 4
Ct (z,9)
cos(z — %{) sin( — 37:) — sin(I — %) cos(y — 3Z7r) (40)

=~ cot (y — z),

T - n . ™ T
COS(I - Z) Sln(y - z) - Sln(I — Z) COS(y - Z)
£(zy) 3r\ . 3 . 3 3w

COS(I - T) Sln(y — 74‘) — Sln(l‘ - T) COS( — Z‘)

= 1.

a

Q

2

U

The insertion of these asymptotic values of the radial functions into the
radial-transmission-line relation [Eq. (37)] immediately yields the uniform-
transmission-line relation [Eq. (15)]. This is not an unexpected result;
for in the range of large radii, the cylindrical cross-sectional surfaces of a
radial guide tend to become parallel planes and thus the radial geometry
approaches the geometry of a uniform transmission line. As a conse-
quence, impedance computations on radial lines for which z and y are
sufficiently large may be performed with the aid of the uniform-line
relation [Eq. (15)] rather than of Eq. (37). The accuracy of such a
computation depends, of course, on the values of z and y; in fact, for
reasonable accuracy it will be found that both the input and output
terminals of the line must be located at least one wavelength from the
axis of radial symmetry.

For impedance computations on long radial lines in which either the
input or output terminals are located at a small radius (z or y < 2x),
a stepwise method of calculation is necessary because of the limited
range of y — = over which the radial functions are plotted. The pro-
cedure is to divide the long line arbitrarily into a number of radial lines
of length such that the charts of Figs. 8-8 to 8-:10 can be employed. In
most cases a division into only two lines is necessary. The output ter-
minals of the first line are chosen at some convenient radius such that its
length y — z is less than about =. For such a line length the range
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of the radial functions plotted in the charts is adequate. The same
procedure is repeated for the second line. The input and output ter-
minals of the remaining portion of the long radial line will then usually
be at sufficiently large radii to permit the application either of the uni-
form-line relation [Eq. (15)] or, equivalently, of the circle diagram with
relatively small error.

Although applications of the radial-transmission relation [Eq. (37)]
will be made in the next sections, it is desirable to consider a few pre-
liminary illustrations of its use with a view toward obtaining some idea
of the physical significance of the radial functions. As a first illustra-
tion let us find the relative input admittance Y’(r) of an E-type radial
line with a short circuit at its output terminals located at r = 7.  Setting
Y'(ro) = = in Eq. (37), one obtains for the input admittance

Yi(r) = —jet (z,y). (41)

The radial function — ct(z,y) is thus the relative input susceptance of
a short-circuited E-type line or, by duality, the relative input reactance
of an open-circuited H-type line. It is to be noted from Figs. 8-8a and b
that the length of short-circuited line required to produce a givenrelative
input susceptance is greater in the case of a radial E-type line than for
the uniform line if the relative input susceptance is less than unity and if
y > z; the radial line is shorter, however, for relative susceptances
greater than unity if ¥y > z and for all susceptances if y < z.

The relative input admittance Y'(r) of an E-type line with an open
circuit at its output terminals is obtained by placing Y’(r¢) = 0 in Eq.
(37) with the result that

V) =i g~ T @) (42)
The radial function Tn (z,y) is thus the relative input susceptance of an
open-circuited E-tvpe line or by duality the input reactance of a short-
circuited H-type line. From Fig. 8-9a and b it is apparent that the rela-
tive lengths of open-circuited radial E-type and uniform lines have, for a
given relative input susceptance, a behavior almost inverse to that of
the short-circuited lines.

The case of an infinite radial line, that is, one extending from r = 0
tor = o is of interest and will now be considered. The relative input
admittance at » of an E-type infinite line looking in the direction of
Increasing radius is obtained from Eq. (37) by setting both Y'(ry) = 1
and y > 1. With the aid of the relations of Fgs. (5), (Gh), and (38),
one finds for the relative input admittance

- HE (kr)

V) = =i Ty (430)
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——— 5 for kbr <1, (43b)

Y(@r) =1, for kr > 1. (43c)
By use of the definition [Eq. (7a)], Eq. (43¢) may be put into the form

Y/(r) = 108 (= 20) — J sin (0 = no)l (43d)

As is apparent from Egs. (43a) and (43d) the input admittance of an
infinite radial line is in general not equal to the characteristic admit-
tance Yo(r)! Moreover, the relative input admittance is complex with a
negative imaginary (that is, inductive) part. Correspondingly, by
duality, the relative input impedance of an infinite H-type line is complex
with a negative imaginary (capacitive) part.

The relative input admitance at r of the same infinite E-type line but
now looking in the direction of decreasing radius is obtained by setting
ro = 0in Eq. (837). With the use of Eqs. (8) and (38), it is now found that
for all finite Y’(0) the relative input admittance is

Yo = i 7, (44a)
Y'(T) — _]‘ ]ﬁzr, kbr & 1, (441))
Yl(r) = —jtan <k7‘ — %'), kr> 1. (44c)

The input admittance is thus seen to be positive imaginary (capacitive)
if it is remembered that admittances are counted negative when looking
in the direction of decreasing radius. Correspondingly, by duality, the
relative input impedance of an infinite H-type line is positive imaginary
(inductive). This asymmetric behavior of the admittance of an infinite
radial line is in marked contrast to that of an infinite uniform line where
the relative input admittance is always real and equal to unity looking
in either direction along the line.

8-6. Reflection Coefficients in Radial Lines.—In addition ¢o the
standing-wave or admittance description of the fields in radial trans-
mission regions, there exists, as in uniform regions, an alternative descrip-
tion on a reflection or scattering basis. This latter description is based
on the traveling-wave solution to the wave equation [Eq. (33)]:

V(r)y = AHP(kr) + BH (kr), (45a)

where A and B are the complex amplitudes of the waves traveling in the
directions of increasing and decreasing radius, respectively. The solution
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for the current I follows from Eq. (45a) by use of Eq. (31) and the dif-
ferential properties of the Hankel functions as

JZo(r)I(r) = AH®(kr) + BH® (kr), (45b)

and this again may be interpreted in terms of waves traveling in both
directions. Reflection coefficients may now be introduced at arbitrary
radii r and r, and defined as ratios of waves traveling in each direction
at these points. Both current and voltage reflection coefficients may be
defined. The voltage reflection coefficients are

B Hp (kr) B H (kry)

I‘,,(T) = Z ’W’ FU(TO) = Z ml (46(1)
and the current reflection coefficients are correspondingly
_ B H®kr) _ B HP(kro)

Ti(r) = A HO(kr) I'i(re) = A HP (ko) (46b)

On the elimination of the factor B/A there are obtained the fundamental
transmission-line relations

To(r) = Ty(ro)ersiretn=—miml, (47a)
Ti(r) = Ti(ro)erdmn—mbro] (47b)

that relate the values of the reflection coefficients at the radii » and 7.
The quantities 7o and 5, are the phases of the Hankel functions as defined
in Eq. (7a). The transmission Eqs. (47) also provide a means of relating
the admittances at two points on a radial line. This relation may be
obtained from the wave solutions by division of Eq. (45a) by Eq. (45b)
with the result that at the radius r

I(r) _
Vi) —

H®(kr)1 + T,
HPG;r) T+ T,

—jYo(r)

(48)

This equation may be transformed to the more familiar form of a relation
between the reflection coefficient and the admittance as

Y_
1—T, (2
7 _ 14T — i <Y(T>
Vo) =14+, = — 1371, (49a)
or conversely as
_ZL -1 _ _1=YL
Fv(T) - m’ I'y = TY,_’ (49b)
if the relative admittance (or impedance) ratios are introduced as
VL) = s = ol i) = = YO (50)

S Z) Y0 VACEER F 0O
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where
H® (kr)
HP (kry

)

Yol = 3V Iy 6D
are the admittances associated with waves traveling on an infinite E-type
radial line in the directions of increasing and decreasing radius, respectively
[¢f. Eq. (43a)]. It is instructive to note that the radial-line relations Egs.
(47) to (50) go over into the corresponding uniform-line relations Eqgs.
(17) and (18) in the limit of large kr, for in this limiting region

Yi(r) = —5Yo(r)

no(kr) = mkr) = kr — ’3:,
r, = —TIy,
and
Y = Y5 =Y.

Equations (47) and (49) provide a method alternative to that of Eq. (37)
of relating the admittance at two different points of an E-type radial line.
The corresponding relations for the case of an H-type line are obtained by
the duality replacements discussed above.

8-7. Equivalent Circuits in Radial Lines.—The radial-transmission-
line relations so far developed permit the determination of the dominant-
mode voltage and current or, alternatively, the admittance at any point
on a radial line from a knowledge of the corresponding quantities at any
other point. These relations assume that no geometrical discontinuities
exist between the two points in question. The existence of such a non-
uniformity in geometrical structure implies that relations like Eqs. (35),
for example, must be modified. The form of the modification follows
directly from the linearity and reciprocity of the electromagnetic field
equations as’

I,
1,

YuVi+ YV,

YV 4 YasVo, (52)

[

where I; and V; are the dominant-mode current and voltage at a reference
point on one side of the discontinuity and I,, V, are the same quantities
at a reference point on the other side. These equations are identical
with Egs. (19) which describe a discontinuity in a uniform line. The
discontinuity can likewise be represented schematically by the equivalent
circuit indicated in Fig. 8-5 which shows the choice of positive directions
for the voltage and the current. The equivalent-circuit parameters
Y11, Yz, and Y, depend on the geometrical form of the discontinuity
as well as on the choice of reference points. As in the case of the uniform
line, the explicit evaluation of the circuit parameters involves the solu-
tion of a boundary-value problem and will not be treated here. The
customary assumption that they are known either from measurement or
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from computation will be made. Even when the reference points
designated by the subscripts 1 and 2 in the circuit equations are chosen as
coincident at some radius, the equations are still valid. Equations (52)
then indicate in general an effective discontinuity in the dominant-mode
voltage and current at the reference radius in contrast to the continuity
that exists at every point in a smooth radial line.

A particularly instructive example of an equivalent circuit is that
corresponding to a length 7o — r of an E-type radial line with no dis-
continuities between r and r,. The relations between the currents and
voltages at the reference radii r and r, have already been derived in Eqgs.
(35). They can readily be put into the form of Egs. (52) by a simple
algebraic manipulation that yields

Iy = —jYo(r) et(z,y) V1 — § V'Yo() Yolro) est(z,y) Ve,
I. = —j VYo Yolro) cst(z,y) Vi + jYo(ro) ct(y,z) Vs,
where

(53)

Il = I(T), Vl
Ig = I(To), Vg

Vr), x = kr,
=V(re), y =knr,

and
2 1
T Vzy

CSt(I,y) = :]|]N—00—N_0J0-0 = —‘CSt(y,I).

The function cst (z,y) is termed the radial cosecant function, since it
becomes asymptotically identical with the trigonometric cosecant
funection for sufficiently large £ and y. The value of the radial cosecant
function may be computed from the tabulated values of the radial
cotangent functions by use of the identity

1 + et(zy) Ctlzy),
$(xy)

This identity goes over into the corresponding trigonometric identity

cst? (z,y) = (54)

ese?(y —z) =1+ cot? (y — x)

for sufficiently large z and y. From Eqgs. (53) it is to be noted that the
equivalent circuit of a length of radial line is unsymmetrical in contrast
to the case of the uniform line. The shunt and series parameters of the
r-circuit representation (¢f. Fig. 8-5) for the radial line are seen to be

Yiu— Y= —jYo(r) [Ct(zyy) + \/% CSt(x;?/)]:
V= Yiu = =i¥o) | —ettw) + \[Fessiwm | ,{
Vi = —jJ \/YD(T)YO(TO) cst(z,y)-
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‘Since the corresponding equivalent-circuit representation of a finite
length of an H-type radial line differs somewhat from that of the E-type
line just considered, it is perhaps desirable to indicate explicitly how the
duality principle may be employed to obtain the H-type representation.
On use of the duality replacements in Eqgs. (563), the circuit equations are
obtained corresponding to a length ro — r of H-type radial line in which
there are no discontinuities; thus

Vi = —jZo(r) ctzy) I, — j N Zo(r)Zo(ro) est(z,y)ls, (56,

Vo= —j VZo(r)Z(ro) cst(z,y) I + jZo(ro) ct(y,2)]s, !
where the various quantities are defined as in Eq. (53). These circuit
equations are of the form

12 Zul + szlz,
V. Zyoly + Zosl,

If

and may be schematically represented as the T-circuit shown in Fig. 8-11.

I, Z2,-%2, 2n-Z%

o— AW AN

e
T ZlZ ?
4 4

O O
Fig. 811, —T-¢ircuit for a discontinuity with positive directions of V and 1.

12 [2

The series and shunt elements of the T are given by

Zy — Zy

It

—3Zo(r) {ct () + V/g cst(x,m],

—iZo(r) [—ct(w) + \/g cst(y,nJ,
Zis = —F N Zo("Z(ro) cstay).

It should be emphasized that equivalent-circuit representations of
the type described in Egs. (53) apply to radial lines on which only one
mode 1s being propagated, or at least on which all higher modes are
effectively terminated by their characteristic impedance. If such is
not the case, the equivalent circuits must be modified to include the
description of more than one propagating mode.

The admittance description of radial lines will be completed with the
derivation of the differential form of the relation between the relative
admittances at two points r and 7o on a radial line. To derive this rela-
tion in a manner analogous to that employed for the uniform line, one

first forms the differential of the logarithm of the transmission-line
relation [Eq. (47a)] and obtains

57
Zos — Zua (57
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AI‘.,(r) AT, (ro)

+ JQ[Ano(I) — Ano(y)]

Tu(r) Ty(ro)
or
ATL(r) _ ATu(ro) 1 1 ]ak
o) - Toro) T [h2(lcr) h(kro)] (58)

This differential relation indicates on one hand that the change in phuase of
the voltage reflection coeflicient at the input end of an E-type radial
line is the sum of a phase change associated with the output reflection
coefficient plus a phase change associated with the electrical length of
the line. On the other hand, the relative change in amplitude of the
input voltage reflection coefficient is identical with the relative change in
amplitude of the output reflection coefficient. This behavior is analogous
to that of a uniform line, and in fact Eq. (58) becomes identical with the
uniform-line relation [Eq. (22)] for large kr and kro. By means of Eq.
(58) it is possible to compute the change in the input voltage reflection
coeflicient due either to a frequency change Ak/k or to a change in output
reflection coefficient or to a simultaneous change of both these factors.
In order to express Eq. (58) in the admittance form it is necessary to
find the differential relation between the voltage reflection coefficient
and the relative admittance. Although this relation can be obtained by
differentiation of Eq. (49b), such a procedure is not too simple. It is
somewhat more desirable to derive the desired differential relation
between the relative admittances at any two points r and r, by starting
from the expression for the amplitude ratio

—-B Jl‘jy (rJo Jw — 7Y (ro)J oo

A N —jY("’No ~ Ny — 7V (ro)Noo
obtained from Eqs. (34a) and (34b) and the definitions of Eq. (36).
Forming the differential of the logarithm of this ratio at z = kr and
y = kro and equating the results, one gets, with the aid of the Wronskian
relation, Eq. (9¢),

CAY() { . Y'(r) 7} Ak>
(1 FEver T VT e prerf ®) o0

_{ AY'(r0) { . Y’ (ro) ] Ak)

- (1 + Gy ear T Y T ] &) < 69
1+ pror 2
[Jalkr) — 3Y'(r) o(kr)]? wkr
The reason for the introduction of a coefficient «(r) lies in the fact that
a(r)/a(ro) approaches unity as kr and kr, become sufficiently large. In
this far region Eq. (59) becomes asymptotically identical with the corre-
sponding uniform-line relation [Eq. (23a)]. Tt should be pointed out that
liq. (59) can be emploved to compute the change in relative input admit-

where

a(r) =
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tance due to a change either in output admittance AY'(ro) or in frequency
Ak/k = Aw/w or in both. A particular case of Eq. (59) which is often
of use occurs when a short circuit exists at the output terminals. For
this case

Yi(r)) = =,  AY'(ro) = A (Z'zro)> - [AZZ"(lg;])Z’

and therefore Eq. (59) reduces to

AY'(r) : Y'(r) }A_k]ar
[1 o R G e b o1 Il )

_ , . Ak 2
2200+ 05 | iy @
The importance of differential relations of the above type stems from
the fact that they provide a relatively simple admittance means for rigor-
ously computing @’s of cavities and other parameters, as will be illustrated
in the following sections.

The corresponding differential relation for an H-type radial line may
be obtained by the usual duality replacements. The fundamental dif-
ferential relative admittance relation [Eq. (59)] becomes, under the
duality transformation, a relative impedance relation of exactly the same
form. It is important to note that the characteristic impedance Zo(r)
of an H-type line is a function of k in contradistinction to an E-type line.

8-8. Applications.—In the preceeding sections a variety of methods
employed to describe the electromagnetic fields within radial transmis-
sion systems have been investigated. These investigations indicate
that complex radial systems of the sort often encountered in practice
may be regarded as composite structures consisting of transmission
regions and discontinuity regions. The associated descriptions of the
fields within these component regions fall naturally into two distinet
categories: the transmission-line description and the equivalent-circuit
description. It is thereby implied that the electrical properties of such
composite systems may be computed by straightforward engineering
methods involving only impedance calculations on the transmission-line
and circuit equivalents of these systems. As illustrations of such com-
putations we shall first consider a class of resonant-cavity problems with
particular consideration of some cases associated with the design and
operation of certain high-frequency electronic oscillators.

The electrical properties of a resonant system are determined by
specification of the three fundamental parameters:.

1. The frequency of resonance.

2. The Q of the resonance.

3. The resonant conductance.
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The meaning as well as computation of these parameters may perhaps
be clarified by consideration of a general resonant system schematically
o represented in the vicinity of the res-
onant frequency by an equivalent ecircuit
of the form shown in Fig. 812. 'The
, 1 representation is recognized to be that
?9 ¢ gl’ of a lumped-constant low-frequency
shunt-resonant circuit. It is also rep-
resentative at some reference point for
1y the admittance description of the be-
F1q. 8-12.—The equivalent circuit of havior of the electromagnetic fields in
a system near resonance. spatially extended resonant systems of
many types. The total admittance associated with the resonant system
may be written

Y=g +j(wc - ;%) = () + jB(w), (61)

where the first form pertains to the lumped-constant circuit and the
second to the extended structure. The fact that in the second case the
circuit parameters may depend on the angular frequency has been
explicitly emphasized in the expressions for the total conductance ¢, and
total susceptance B,.

A resonant frequency of an electromagnetic system is defined as a
frequency at which the average electric and magnetic energies within the
system are equal. Since by an energy theorem (¢f. Chap. 5) the total
susceptance of an electromagnetic system is proportional to the dif-
ference between the average electric and magnetic energies stored in
the system, it follows that an angular frequency wo of resonance is
identical with the frequency for which

wC =~ = Bfwr) = 0. 62)
Since the total susceptance may vanish at more than one frequency,
Eq. (62) determines, in general, a series of resonant frequencies.

The @ of a resonant electromagnetic system is defined as the product,
at resonance, of the angular frequency w and the ratio of the total energy
stored in the system to the power dissipated or otherwise coupled out of
the system. The total energy stored within an electromagnetic system
can be expressed in terms of the frequency derivative of the total sus-
ceptance and the rms voltage V associated with the equivalent circuit
describing the system. From the energy theorem discussed in Chap. 5
this expression for the total energy is

1 1 1dB,
= _ 72 — 7t yre
2(C+wun>I Sde |
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Correspondingly, the total power lost from the system is g, V% As a
consequence, the desired expression for @ at the resonant angular fre-

quency wo is
_ 1 fwdB, _ woC
Q= 2. (Tw >w=wn = (63)

17

and is seen to be independent of the voltage V associated with the refer-
ence plane to which the equivalent circuit pertains. The fact that both
the resonant frequency and the @ of an enclosed system are invariant
with respect to choice of reference point should be evident from their
original definitions in terms of energy. This independence with respect
to reference point does not apply to the last of the three aforementioned
parameters—the resonant conductance. As has already been implied
the resonant conductance g,(wo) is defined as the ratio, at resonance, of
the total power lost from the system to the square of the rms voltage at
the reference plane.

As an application of the developments in Sec. 83 to 8-7, we shall now
consider a few examples of the computation of the resonant parameters
defined in Eqgs. (61) to (63).

8:9. A Coaxial Cavity.—The first case to be considered is that of a
nondissipative cylindrical cavity oscillating in the lowest symmetrical
E-type mode. The cavity dimensions are indicated in Fig. 8-13. Asalso

0 n L
Cross-sectional view

r=kr,=0.020"k Y,
1 Y, = 0 Y=
Il=k7‘z=0.115"k 1= k 2=

7 2
Equivalent network
Fia. 8:13.—A coaxial cavity.

shown in the figure the equivalent electrical network for this structure is
an E-type transmission line of length ro — r; and propagation constant
k = 2r/\ = w/c with infinite-admittance terminations at r, and r..
With the choice of r; as the reference radius, the total admittance at
71 is seen to be the sum of the infinite admittance of the termination
plus the input admittance of a short-circuited E-type radial line of
electrical length y — 2. By Egs. (41) and (63) the resonant wave
number & (or angular frequency ws) is therefore determined from the
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resonance condition

ct{z,y) = — . (64)
Reference to the plot of the radial cotangent function in Fig. 8-8a shows
that for
=2 = 5.75,

T
1

5l

the solution to Eq. (64) is
Yo — Lo = ko(Tz - T1) = 304,

_2r . (0.095)
A L YT

or

= 0.196 in. = 0.50 cm.

The resonant wavelength is thus about 3 per cent greater than that of a
corresponding uniform cavity of equal length. The remaining resonant
parameters @ and g are, for this nondissipative case, infinite and zero,
respectively.

8.10. Capacitively Loaded Cavity.—As a second illustration let us
consider the calculation of the resonant frequency of a loaded cylindrical

} | b

b b
E ¥ P
o " * 7,
Cross-sectional view
z=kr, =0.020" k Y, Yl)'
y=kr,=0.115"k II——[—
b=0.007" I B,
b =0.042" }_I___
0N T,

Equivalent network
Fic. 8-14.—A capacitively loaded cavity.

cavity oscillating in the lowest angularly symmetric E-type mode. As
indicated in Fig. 8-14, the equivalent network that describes thefields
within such a structure consists of a junction of an open- and a short-
circuited E-type radial transmission line of unequal characteristic admit-
tances Yo(r) and Y§(r) but identical propagation constants k = 2x/\ and
a junction admittance of value jBi. The network parameters are
obtained from Eq. (30) and the Waveguide Handbook as

Yolr) b

Yir) b (650)
B1 . 2kb’ eb’

Vi T e m (650)

where In is the logarithm to the basee. Equation (65b) is an approxi-
mation that is valid to within a few per cent for the cavity shape under
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consideration. At the reference plane r = r;, the total susceptance
relative to the characteristic admittance Yj(ry) is, from Egs. (41) and
(44a),

B(k) _ B Yo(r) Julx) ct(z.y)

Yotr)  Yo(r) © Yo(ri) Jo(z) e

or to a good approximation by Egs. (44b) and (65a)

B(k) _ B:
Yo(r) ~ Vi)

The resonant frequency of the lowest E-type mode is obtained from that
value k¢ for which the total susceptance vanishes. With the insertion of
the numerical values into Eq. (66) the vanishing of the total susceptance
leads to the transcendental resonance condition

—0.0379ky — 0.060ky = —ct (0.020k,, 0.115k) (67)

which can be solved graphically for ko with the aid of ¥Fig. 8-8¢. The
Jeft-hand side of Eq. (67) is expressed as a function of

+ T — Ct(zyy)' (66)

Yo — To = ko(rs — ry) = 0.095k,,

and as such it is representable in Fig. 8-8a as a straight line of slope
—(0.098/0.095) = —1.03. The intersection of this line with the function
—ct (x,y), with y/z = 5.75, then yields for the solution of Eq. (67) the
value

Yo — Lo = 0095’60 = 135,

and consequently the resonant wavelength is

Ao = r_ 0.441in. = 1.12 c¢m.
ko
In many applications it is necessary to know the dependence of the
resonant wavelength on the gap height b. This dependence may be
computed exactly as in the above case and will be found to yield the
values shown in Table 8-2.

TaBLE 8:2,—VARIATION OF RESONANT WAVELENGTH FOR THE CAVITY OF Fig. 8:14

b, in. Ao, cIM
0.005 1.24
0.006 117
0.007 1.12
0.008 ) 1.08
0.009 1.04

8-11. Capacitively Loaded Cavity with Change in Height.—As a
variant of the two preceding examples let us consider the problem of
finding the gap height b to make the cylindrical cavity illustrated in
Fig. 8-15 resonate at the wavelength A = 1.25 em in the lowest angularly
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symmetric E-type mode. In this specification of the problem the
electrical lengths,

ry, = le = 0255,

To = krz = 0638,

T3 = kry = 1.468

are explicity known, and hence the values of the radial functions may be
obtained directly from the plotted curves. The electrical network that
describes the lowest E-type mode in the above cavity consists of three
E-type radial lines of characteristic admittances Yo(r), Y;(r), and Y (r)

! ]
} | T |k
E e |
— rn, =0020"
ot " T T3 r, =0050"
Cross-sectional view r =0.115"
Y, Y, ' Yo“ b =?
= _]_ b' = 0.042"
i
: iB, iB, »"=0.050"
T
Fnon o n

Equivalent network
FiG. 8-15.—Loaded coaxial cavity with a change in height.

joined at the radii r; and r;, with the first and last lines being open- and
short-circuited, respectively. The junction admittances jB, and jB, at r;
and r; are capacitances whose susceptance values may be determined to
within a few per cent from the Waveguide Handbook. Higher-mode
interaction effects between the discontinuities at r; and r, are assumed
to be of negligible importance. For the cavity indicated in Fig. 8-15,
the values of the network parameters are

Yir) _ b _ Yo(r) 0.042

bl
ORI (OIS S (@5
o)
By _ 2KV’ (1 ~ o <1 NG IR
Yi(rs) ~ w 4a -« T
B,
S = 0.016
Yo(re) ’

and B, is determined from Eq. (65b) which incidentally is a limiting form
of Eq. (68b) fora << 1. To determine the gap height b, it is first necessary
to compute the total susceptance at some reference point, say r = r, + 0.
The total susceptance at this reference point is the sum of the suscept-
ances looking in the directions of increasing and decreasing radius. The
susceptance in the direction of Increasing radius is computed by a stepwise
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procedure. As a first step, the sum of the junction susceptance at r.
and the susceptance of the short-circuited line of electrical length z; — z.
relative to Y(ry) is computed to be

By _ Yi(r)
Yi(r) Yo(ra)

with the aid of Egs. (68) and Fig. 8 8a. It is noted that the change in
height at r. has a relatively minor effect in terms of the junction sus-
ceptance introduced thereby but a major effect in terms of the change in
characteristic admittance. With this knowledge of the relative sus-
ceptance at z,, the relative susceptance at z; 4+ 0 in the direction of
increasing radius may be calculated with the aid of the radial-trans-
mission-line relation [Eq. (37)] as

ct(zs,z;) = 0.016 — 1.334 = —1.32

—

B 1 — 1.32 ct(z1,20){ (21,22)

Yo(tr)  Ct(zy,ze) + (1.32)¢(z1,22) (69a)
or explicitly by use of Figs. 88 to 8:10 (with z./z; = 2.5)
B _1-—(1.32)(4.04)(0.872) _ — 145, (69b)

Yi(r1) 136 + (1.32)(0.872)

The relative susceptance at z; + 0 looking in the direction of decreasing
radius has already been found in Sec. 8-10 to be

B _ 2. e  Va

Vo)~ x Pty (70a)
B 0.0285 , 0.00535

The resonance condition [Eq. (62)] that the total susceptance E + §

vanish then leads to

0.341 In 0.0b285 + 0.00535

—1.45 =0,

b
which can be solved graphically for b to give
b = 0.00590 in.

For the case in which the height b is known, the problem of finding the
resonant frequency is solved by a method similar to the one just carried
out. Values of k are assumed, and by a trial-and-error method the
resonance value ko is found as that for which Egs. (69a) and (70a) are
equal in magnitude but opposite in sign.

8-12. Oscillator Cavity Coupled To Rectangular Waveguide.—As a
final illustration of the computation of the electrical properties of cylin-
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drical cavities we shall consider the case of the radial cavity of Fig.
8-16 oscillating in the lowest angularly symmetric E-type mode and
coupled to a matched rectangular waveguide. Such structures, fre-
quently encountered in high-frequency oscillator tubes, are excited by an
electronic beam along the symmetry axis. The case illustrated in Fig.

|

BN e
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21'l T
2r, —
Top view (reduced scale)
! !
T ! b
E
| _Lb i
ont 7
Y, Y, Y,
Mg é 5
1 ~J
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on LF)

Fig. 8-16.—Cavity and equivalent circuit of an osillator coupled to waveguide.

8-16 resembles closely the cavity of the Neher tube designed for operation
in the 1-cm wavelength range. The calculation of the over-all electrical
characteristics of such an electronic-electromagnetic system requires a
knowledge of the interaction of the electronic beam and the electromag-
netic field as summed up in the expression for the electronic admittance
at some reference plane. This electronic problem has been considered
elsewhere in the Radiation Laboratory Series' and will be omitted in
the following discussion, since the modification thereby introduced is
taken into account simply by inclusion of the electronic admittance in
the expression for the total admittance.

The computations as always are based on the network equivalent of
the oscillating system. As shown in Fig. 816, the radial-transmission-
line description of the system to the left of the radius r. is identical with
that employed in Sec. 8-10, and hence the values of the associated circuit
parameters need not be indicated again. The only additional values
necessary are those associated with the coupling network at r, and with

! Klystrons and Microwave Triodes, Vol. 7.
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the Hgi-mode uniform transmission line describing the rectangular
waveguide. In the case under consideration the coupling is accomplished
by a small slit of width d in a wall of infinitesimal thickness. The
coupling network is a simple shunt inductive element whose relative
susceptance is given by (¢f. Waveguide Handbook)

B _ \ (4n)
Vi) — s ( d ) ' (71a)

The effective ratio of the characteristic admittance Y, of the rectangular
guide to the characteristic admittance Yg(rs) of the radial guide at r;

18
Yo _ X dars
Vioe) "N @ (71b)

where the wavelength A\, in the rectangular guide of width a is related

to the free-space wavelength X by
A

With the knowledge of the pertinent circuit parameters as contained in
Eqgs. (65) and (71), it is now possible to compute in a straightforward
transmission-line manner the total admittance at some arbitrary reference
point and thence the desired resonant properties of the system. How-
ever, rather than proceed in this manner there can be employed a simpler
and more convenient perturbation method of computation that is based
on the smallness of the impedance coupled into the cavity system at
r = ry. If this impedance were identically zero, the total admittance
at r = r; would be zero and correspondingly the resonant wavelength
would be Ao = 1.12 em as computed in Sec. 8'10. The effect of the
coupling is to introduce at r = r, a small impedance AZ, and thereby
bring about a small relative change in the unperturbed resonant fre-

quency of amount

do _ 8k _ _ M

w k A
Concomitant to these changes there is produced a change AY] in the total
relative admittance given by

, . 0Y Ak | Y,

AY, =k T + o7

which merely expresses the fact that the total admittance is a function
both of the frequency and the terminating impedance at r = r,. Equa-
tion (72) provides the basis for the computation of the frequency shift
caused by the perturbation AZ),. The imposition of the equilibrium
condition [Eq. (62)] that AB] = 0 leads to the desired value for Ak/k.

AZ;, (72)
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To perform the calculation it is first necessary to know the numerical
values of the partial derivatives in Eq. (72) that indicate the rate of
change of the total admittance with respect to both the frequency and
the output impedance Z..

The total admittance at r = 71 + 0 is the sum of the relative input

admittance 17’ of the radial line to the right of r;y + 0 plus the relative

admittance ¥’ looking to the left of r + 0. From Eq. (67) of Sec.
8-10, the unperturbed values at ko = 14.21 in™! (Ao = 1.12 em) of these
admittances are

i;’ (Tl)
Y'(r)

—1.39,
+7(0.098)(14.21) = +41.39.

The partial derivative with respect to frequency of Y’ for the unperturbed
cavity is obtained by means of Eq. (60) and Table 81 as

k%lg :].{jy', T N [J,(r)f}(y; o(z >] }

ok 0.437
= j2.78.

T = {1.39 ~ 0.284 (1 + 1.93) + 0.284 [Qi 773739&@0)] }

The corresponding frequency derivative of ¥’ may be computed in a
g

similar manner, but it is simpler to differentiate ¥’ directly, since it is a
linear funection of k, and obtain
Yy’ . . .
k ar = J7(0.098)k; = j1.39,
a value identical with Y’ itself as is to be expected, since V' is effectively

a lumped admittance. The frequency derivative of the total admit-
tance at r, is thus, in the unperturbed case, imaginary and of the value

Y’ aY’ | oY\ . . -
R l‘(ak + ’ak’) = j4.17. (73)

Likewise from Eq. (60) the variation of the total admittance with the
output impedance at the unperturbed frequency ko is

ov; _ a1« o) - wﬂ_r)]
6Z'2 dZ, y a(y)
0020{0\11 — (1.39)(0.098) ] s

QR
0.115

0.437

..
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With the knowledge of the numerical values of the partial derivatives
in Eq. (72), it is now possible to compute the frequency shift caused by
the introduction of a coupled impedance whose value relative to Zj(rs) is

’ P 1
AZ; = AR; + jAX; = Y, . B
Yol 7 Yilr)
or
r_ 1 _ . _

the numerical values being obtained by use of Egs. (71a) and (71b). The
frequency perturbation necessary to maintain the equilibrium condition
of vanishing total susceptance is obtained by setting the imaginary part
of Eq. (72) equal to zero

dB, Ak | 3Y;

/ t ’
AB_kakk+6Z’AX 0,
and therefore
aY;
Ak T ez ., _ (1.35)(21.8)103 _
T = )24 AX, B —7.05 X 103 (74)
k ok

The actual resonant frequency of the coupled system is thus 0.705 per
cent less than the unperturbed resonant frequency, and the smallness of
this frequency shift justifies the perturbation method of calculation.

The remaining characteristics of the system can be computed with
the aid of the results obtained above. The resonant relative conduct-
ance, for example, is the real part of the change in the total admittance
at » = 7; due to the coupled perturbation AZ; and is given by the real
part of Eq. (72) as

’
g = Ag, = g; AR, = (1.35)(1.41)10-% = 1.90 X 10~%.  (75)

In connection with these calculations it is of importance to note that the
coefficients of AX) and AR; in Egs. (74) and (75) indicate fespectively
the frequency and power-pulling factors of the output load on the cavity
(the electronic effects being neglected). It is a straightforward pro-
cedure to further compute the pulling factors with respect to the load
in the rectangular guide.

The loaded @ of the system is given by Eq. (63) as

1, 3B,
Q= _ak
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or with the insertion of the numerical values from Eqs. (73) and (75)

0 1

= ’2—(1.90)710_3 X (417) = 1100.

For the computation of the unloaded @ the effects of dissipation on the
metallic boundaries of the system must be taken into account. The
modification required in the over-all equivalent-circuit—transmission-
line picture consists in the introduction of resistive elements into the
circuit parameters and in the introduction of a complex propagation
constant %k and characteristic admittance (with variable imaginary
parts) to describe the radial transmission lines. These effects, as well
as finite-thickness effects, will not be taken into account in this chapter.



CHAPTER 9
WAVEGUIDE JUNCTIONS WITH SEVERAL ARMS

By C. G. MontcoMERY AND R. H. Dicke

Low-frequency communication circuits usually consist of networks
composed of interconnected single-terminal-pair circuit elements such
as resistors, condensers, and inductors. Occasionally, circuit elements
with two terminal pairs, such as transformers, are used. In micro-
wave circuits, waveguide junctions with several arms are often employed.
This is necessary because lengths of line long compared with the wave-
length must be used to connect different components together. The
simple connection of a number of components in series or in shunt is
not possible because of the finite size of the components. Thus there must
be a length of transmission line associated with each component, and the
individual transmission lines must be connected together at a microwave
junction.

The description of the behavior of a junction increases in complexity
as the number of armsincreases. A convenient classification of junctions
may be made on this basis. Thus it is convenient to speak of a junction
with four interconnecting arms as a member of a class that might be
called “fourth-order junctions’ or ‘“‘four-junctions.” In low-frequency
terminology, such a junction would be termed a network or transducer
with four pairs of terminals. As usual, only linear passive lossless junc-
tions are to be considered.

T-JUNCTIONS

If a waveguide junction has three arms, it will be designated as a
T-junction. Such a junction is completely characterized by a matrix
of the third order containing six independent elements.

9-1. General Theorems about T-junctions.—Three fundamental
statements that are simple and useful may be made about a T-junction.
By the arguments of Chap. 5, the behavior of the T is identical with the
behavior of an equivalent circuit. Circuits that contain the required
number of independent parameters and are therefore suitable are dis-
cussed in Sec. 4-11. From the properties of these circuits the general
theorems can be proved.

Theorem 1.—Tt is always possible to place a short circuit in one arm
of a T-junction in such a position that there is no transmission of power
hetween the other two arms. The proof is simple. In Sec. 4-12 the

283
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expression was derived for the resulting elements of the impedance
matrix when a load is placed on one terminal pair of a network. If
the short circuit is placed in arm (3), a load of impedance Z; is placed
across the terminals and the impedance matrix of the resulting two-arm
junction is given by

Zi Z3
— 7.y —
P L sy AR Ay "
VA Z2 '
le -~ Z22 U ¢ R
Zizs+ Za Zys + Z;

The plunger stops all power transmission if the mutual element of this
matrix vanishes, or if
40

e = gt 7 @

Since Z; can take any value from — « to + «, this equation can always
be satisfied, and the theorem is proved. The input impedances of arms
(1) and (2) under these conditions are given by

Zﬁ) = Zu - Z_lsz,

Zas 3)
Z® = 7y, — L1221,

ZZE

An even simpler proof of this theorem may be given by means of the
circuits of Fig. 4-35. In the series circuit of Fig. 4-35, if the distance of
the short circuit from the terminal plane is such that the total line length
from the short circuit to the terminals of the transformer is an odd
number of quarter wavelengths, the circuit is open at that point and no
transmission occurs. In the shunt case, the transformer must be short-
circuited to prevent transmission.

The determination of the position of the short circuit to stop trans-
mission is a convenient method of determining experimentally the
parametric lengths of the lines in Fig. 4-35. The measurement can be
accurately made, and the indication is positive. If a small amount of
loss is present, either in the junction or in the movable short-circuiting
plunger, the power transmission does not become exactly zero but passes
through a minimum at the proper position.

Theorem II.—If the T-junction is symmetrical about arm (3), a
second theorem is true. A short circuit in the arm of symmetry can be so
placed that transmission between the other two arms is possible without
reflection. A three-junction with a short circuit in one arm is equivalent
to a transmission line whose characteristic impedance can be found
from Eq. (1) if the subscripts 1 and 2 are made equal, The value is
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) )

VA= <Z — _Z%L, ’ — (Z —_ *ﬁii‘,,,
’ " Z33+Z3 12 Z33+Z
Since Z; may have any value either positive or negative, Z, may also
have any value, and in particular Z, may be unity. This demonstrates
the second theorem.

The theorem may also be proved from the equivalent circuits. For a
symmetrical T the circuits of Fig. 4-35 reduce to those shown in Fig.
9:1. Perfect transmission from terminals (1) to (2) results if the proper
impedance is placed on arm (3) to resonate the impedance Z. The cir-

(3)
l3
1
O—mmm YT \—ammms—O
(98] (2)
IR I nZ 1

F1a. 9-1.—Shunt and series equivalents for a symmetrical T-junction.

cuit then reduces to a transmission line with a characteristic impedance
of unity and a length I; + I,.

Theorom 111.—A third theorem applicable to a general T-junction 1s
that it is impossible to match such a junction completely. A junction
is sald to be completely matched if the input impedance at any arm is
unity when matched loads are connected to the other two arms. The
proof of this theorem follows most easily from the unitary character of
the scattering matrix. If a matched junction is possible, the scattering
matrix must have diagonal elements equal to zero; thus

0 Sz Sis
S = Sz 0 Sza - (5)
Sz Sy O

Since S is unitary, the off-diagonal elements of $8* are zero. From the
(1,2) element
SuSTg + Sl‘ls?;g + Slas;} =0
or
S138F, = 0. (6)

Thus either Si; or 823 must be zero. However, neither S;; nor S.; can
vanish if the diagonal elements of S*S are to be unity. Thus the diagonal
elements of S may not all vanish.

It can also be seen, by the use of similar arguments, that any two of
the diagonal elements of S can vanish only if the third arm of the junction
is completelv decoupled from the junction.
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These three theorems are often useful in understanding the operation
of microwave devices, since the theorems are completely general. Indi-
vidual varieties of T-junctions often have other special properties which
are best described by the equivalent circuit.

9-2. The Choice of an Equivalent Circuit. Transformation of Refer-
ence Planes.—Although any one of a number of forms of circuit may be
used to represent a junction, certain circuits are particularly suitable for a
given junction. To establish a criterion of suitability is difficult. Per-
haps the choice could be made on the ease with which the numerical
computation can be performed for a particular application of the junc-
tion. The simplicity of the computations depends upon the application
for which the junction is intended as well as upon the nature of the june-
tion. For example, since the lengths of transmission line of the circuits
of Fig. 4-35 are easily determined experimentally, it might well be argued
that the terminal planes of the junction should be chosen so as to make
the line lengths all zero. The circuits would reduce to simple series and
shunt circuits whose behavior is easy to visualize. This criterion does
not offer any basis for choice between the shunt and series circuits; both
are true equivalent circuits. For a given junction, however, the posi-
tions of the terminal or reference planes are different for the two circuits.
Thus an additional criterion is suggested. If the reference planes fall
close to a plane in the junction that has some physical significance, the
plane of the junction of the center conductors of a coaxial-line T, for
example, then this choice of reference planes seems a natural one. How
this may be applied to a particular junction is illustrated in the examples
to be discussed.

A second method for choosing a correct equivalent circuit depends on
the manner of the variation of the elements of the circuit with frequency.
Thus if a positive reactance occurs in an equivalent circuit, it would be
satisfying if the variation with frequency were just that of an inductance
varying as wL. It is somewhat more likely that the reactance would be
proportional to 2me/X, rather than 2wc/X, since relative values of the
reactance are usually employed. Whether or not this eriterion can he
applied to all cases is not known.  If it were necessary to resort to a very
complex equivalent circuit in order to have the aumount of the frequency
dependence of all the circuit elements correct, then the usefulness of the
equivalent circuit might be largely destroyed. A simpler circuit with
few elements is valuable, even if the dependence on frequency is wrong.
An examination of special cases will aid in the understanding of this
point.

Since transformations from one set of terminal planes to another are
often made, it is desirable to give the general relations that express the
change in the impedance-matrix elements. A change in the position of
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a terminal plane can be regarded as the addition of a length of transmis-
sion line to the equivalent cireuit. The length may be, of course, either
positive or negative, since a line of length —1I is equivalent to one of
(A\/2) — 1 in so far as impedance calculations are concerned. If the
phases of the currents are also to be preserved, the equivalent length is
n\g — I, where n is an integer. Since the calculations are easy, a some-
what more general case will be considered. Instead of a line, suppose
that a general two-terminal-pair network is added to the original junction.

} |

Yk [
—_ e —t— 0
* k-1 (k-2)
) il EEEPN
v k
'vk'1 k N
(o2

Fra. 9-2.—The addition of a T-network to a general network N.

In Fig. 9-2 is shown a network N to which has been added a T-net-
work on the kth terminals. The current ¢, and the voltage v at the origi-
nal network are to be eliminated and replaced by the new voltage v; and
current 7. 'The new and old values are related by

' ‘7 .

VU = 21l — 2120k, (7)
. .

Uy = 2122, — Z2990%.

The negative signs result from the convention that positive currents flow
into the network at the positive terminal of each pair. The network N
is described by the set of equations

nw=Zu+ -+ Zyd+ -

’

Uk

Zlk’£1+"'+zkkik+"‘- (8)

It is a simple matter of algebra to eliminate v, and i, from Eqgs. (7) and
(8). The resulting set of equations will have coefficients that may be
denoted by primes. The values are

ZiZ .

Z, = 7, - Anlr k ¢
1 ZL_’k + Za2 a7 = ] ())
S g

Zi = 2 Zik + 22m Ziy (10)

Ziz1, 211220 — 22,

Z,, = i It TN 1

M Zi A+ 2ae Zix + 220 (n

If the T-network that was added is a length of transmission line of
unity characteristic impedance and length [, the impedance elements are
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21 = 290 = —j¢C t2lr~[
1= Re2 = J eot )\u‘

. 27l ¢
21s = —J e8¢ ;:; < (12)
211222 — 2%2 =1. ’

By successive applications of this transformation, lines may be added to
all the terminals of the network N.

9-3. The E-plane T-junction at Long Wavelengths.—The properties
of branched transmission lines were discussed in Chap. 6 under the simple
assumption that the lines behaved as though they were connected in
series. This approximation is valid for low-frequency transmission lines

'ij
T, @ @
Z3\‘U3 b3
iy
2,
1 z v 1) b
) 7’1T 1 Z, v, (1) b, o S
@ Vo 2 (J)
o . ] ¥
(a) )

r16. 9-3.—A series junction. (a) Equivalent circuit of an E-plane T-junction; (b) cross-
sectional view of an E-plane T-junction.
of all forms. As the frequency increases, the properties of the junction
become more complicated and depend upon the shape of the junction
and the kind of transmission line. Figure 9-3 illustrates diagrammatically
a series junction and defines the convention of positive directions of the
voltages and the currents flowing into the junction. The impedance
and admittance matrices of this system both contain infinite elements
and are consequently of little use. The linear equations that relate the
voltages and currents are '
vyt 02t s =0, (13)
11 = 1y = 1.

A rectangular waveguide, operated in the dominant mode, that has a
branch waveguide joining it on the broad face behaves, at long wave-
lengths, as a pure series junction of three waveguides. Such a junction
is called an E-plane T-junction, since the change in structure at the
branch occurs in the plane of the electric field. TFigure 9-3b shows a
cross section of a waveguide with an E-plane branch. The equivalent
cireuit of this E-plane junction is shown in Fig. 9-3¢.  The proper choice
of the characteristic impedance of the three lines is immediately obvious.
At long wavelengths the integral of the electric field taken around the
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path shown by the dotted lines is zero;
b1E1 + szz + baEz = 0 (14)

Thus if the voltages are taken proportional to the heights of the wave-
guides, Eq. (14) is equivalent to the first of Egs. (12). Since the currents
in the three lines are equal, the characteristic impedance of each line
must be chosen proportional to b. In Fig. 9-3a the characteristic imped-
ances are denoted by Z,, Z., Z.

Although the impedance matrix of this system does not exist, the
scattering matrix does. By the application of elementary circuit theory,
the scattering matrix S may be shown to be

~Z+Z:+ 2y, Z~NZ7Z\Z, Z~NZ\Zs
Z\v+ Z:4+Zs Zv+Z,+Z; Zi+Z,+ Z,s
o Zy— Zy+ Z, Z\NZ,Z, . (15)
S = Z ¥ Z,+7Zy Z, ¥ Z, + Zs
Z1+Z2—Z3
Zi+ Zy+ Zs

This equation as well as Eqgs. (12) is independent of the angle of the
branched line with respect to the main line.

As the frequency is increased, the line integral of the electric field
along the path in Fig. 9-3b begins to have an appreciable value, and the
behavior of the junction is no longer represented by a pure series eircuit.
To investigate the proper equivalent circuit it is useful to restrict the
branching angle to 90° and further to impose the conditions that

bs K by, b1 = bs.
To simplify the notation, it is convenient to write
by =bs=b, by = b’
If a wave is transmitted down the branch line, it is reflected at the

junction with a large reflection coefficient. For small values of b, the
reflection coefficient is given by Si; of Eq. (15):

V3
26 — b’ -
S = o l E |
tn B
O— * 5

If the lines (2) and (3) are terminated in open {0,
circuits, the reflection coefficient is unity. At high Fre. 9-4—Equiva-
frequencies the field configuration in the neighbor- tent ci;cmt of an E-
. . .. plane T-junction with
hood of the junction m1.1st be SImlla.r to !:hat Pro-  junction Suscepmn:g
duced by the symmetrical change in height of a
waveguide described in Sec. 6-16. The electric field is distorted near
the branch line and concentrated to produce an excess storage of electrical
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energy. Therefore a capacitive susceptance must appear at the junction.
The equivalent circuit becomes that shown in Fig. 9-4.
The value of the susceptance B is

p=2 (1 +hn 1;7) (16)
relative to the characteristic admittance of the main waveguide. Equa-
tion (16) is valid if both b/A, and b’/b are small compared with unity.
This value B may be compared with the junction susceptance B’ at a
step change of height in a waveguide. This junction susceptance was

found to be
B = 2”(1 4 ’I’)) an

which is valid under the same conditions.

It is interesting to compare these two junction effects by calculating
the input admittance of the waveguide structure shown in Fig. 9-5. This
I waveguide termination can be re-

| garded as a change in height of the
1 — b 1 guide and a short circuit a distance
H 1 b away. The input admittance is
¥in %j H  therefore
] b ’
l Y, =B — ]% cot 2Lb (18)
. ! Ay

F1e. 9-5.—Structure for comparing the The structure may also be regarded
junction effects of a change in cross section as an -E-plane T-junction with a
and of an E-plane T. short circuit in each of the two main
arms a distance b/2 away from the branch. The input admittance on this
basis is
. 1 wb
Yin = B -

J Jjs R cot 19)
Since b/\, K 1, the difference between Egs. (18) and (19) may be shown
to be

7 !
Yin_Yi’n=j%(ln2—£)—_7009% (20)

Thus the two methods of calculation give the same results to a good
approximation.

This comparison is a critical test of the reliability of both formulas,
since the short circuits are placed close to the junction (b < A,) and
consequently interaction effects are to be expected.

It is often convenient to transform the equivalent circuit of Fig.
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9-4 to a new reference plane in the branch arm. Since the impedance
matrix is infinite, the general form of the transformation given in Sec.
9-2 cannot be used. It is easy, however, to proceed from first principles.
The junction equations are

1+ v+ vs =0,

. . . . 21

1y = 1y = 13 — jBvs. (21)

If a IT-network is connected to arm (3), the new currents and voltages are
given by

0y = Yyuvy — Yrvs,

lg = Y1203 — Yaols.

The network relations become

Yu , Z:: _
ntvt+i=u 4+ = =0,
Y12 Y1z 22)
- . v [ Y22 jB ’ y%z — YuyYae . Y11 (
=1 =%\~ + =)+ |—=—""=—jBZ=)
Y12 Y1z Y12 Yo
If the added line is short,
_ Yo
Y11 = Yo2 = ﬁ = Y1s9.

The junction becomes a pure series junction if the coefficient of v} in
the second of Eqgs. (22) vanishes or if

gl = — (23)

Yo

For this length, Eqs. (22) reduce to Egs. (13). Since [ is negative, the
reference plane is within the junction as shown in Fig. 9-6.

>

T —r—r—x

F1a. 9-6.—Reference planes of an E-plane T-junction with first-order end correction.

——
|
____il-
el [

= v e e 4 Zz y e

9-4. E-plane T-junction at High Frequencies.—At high frequencies
for which the condition b < A, is no longer fulfilled, the equivalent circuit
of an E-plane junction becomes more complicated. For the symmetrical
case, there must be four circuit parameters. An equivalent circuit
which is convenient to use and which reduces directly to the simple
series circuits for long wavelengths is shown in Fig. 9°7. The elements of
the admittance matrix are indicated on the left-hand side of the figure.
If the M-network in arm (3) is replaced by the T-network that is equiva-
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lent to it, the circuit becomes that shown in Fig. 9-7b. The impedances
are related to the admittances of Fig. 9-7a by the equations

Za = 1 ——7
Yu — Y2
%= =
1233 i3 (24)
zZ.= Yo,
YiYss — Y
— Y2 — Y3

Yi12Yss — Y

As b’ becomes small compared with b, Z, and Z; approach zero, Z,
becomes very large, and the only remaining element is the shunt capaci-
tance Z.. The circuit elements are shown as inductances or capacitances

Q) ?
¥4 _T_ |

(b)

F1a. 9-7.—Exact equivalent circuits for an E-plane T-junction at high frequencies.

in Fig. 9-7 according to the sign of the admittances when b’ = b. Typical
experimental values, for /A, = b’/\, = 0.227, are

Z. = —jl04,

Zy = j0.50,

Z. = —j4.85, (25)
Za = —j0.57.

Additional values of the circuit parameters are to be found in Vol. 10
of this series.

The circuits of Fig. 9-1 are, of course, equally valid representations
of the symmetrical E-plane T-junction. The values of the circuit
parameters of the series representation are

ll _ lz la
NN = 0.014, N, = 0.028, (26)
Z = j0.01, n?= 0829,

for b’ = b = 0.2),.
If the three arms of the T-junction have equal heights and branch at
equal angles of 120°, the junction possesses a higher degree of symmetry
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than the 90° junction, and the number of circuit parameters necessary
to describe the behavior is reduced to two. The impedance matrix is
of the form

le Z12 Z12
Z = ZIZ le Z12 . (27)
ZIZ Z12 le

A circuit that exhibits the same symmetry as this junction is shown in
Fig. 9-8. The elements Z, and Z, are related to the elements of Z by
the equations

7. = 2122, + 37Z) 7o = z
1 3(Z, + Zo) YT 37+ Zy (28)
i = Zu + I z, = Gut 2wy = 2Zu),

3Zy,

Another special case of considerable interest is the 180° E-plane
junction or the bifurcation of a wave-
guide in the E-plane. Such a junction is
shown schematically in Fig. 9-9a. 1If the
dividing wall has negligible thickness,
certain special properties are manifest.
The equivalent circuit of Fig. 9:7b may be
drawn as in Fig. 9-9b for the reference
planes indicated in Fig. 9-9a. Since the
reference planes of the three arms coincide,
the voltage v; = v; + v,. The T-net-
work in Fig. 9-9b must reduce to a shunt Fre. 9:8—Equivalent circuit of a
element, and the equivalent cireuit be- 120 E-plane junction.
comes that of Fig. 9-9a. If the heights of the smaller guides are not equal,
an additional element must be added to the circuit. This additional ele-

(3) ? o) (3) [
E* Uy ——

P %‘——W\——

________ — vs,
r— — -H(—I—%(——-
v, v, —
J’ (1) @ o o @ o
(a) () ()

F16. 9-9.—E-plane bifurcation of a waveguide and the equivalent circuit.

ment may be an impedance in series with the terminal common to arms (1)
and (2).
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Another equivalent circuit which may be useful in some situations is
one that contains a three-winding ideal transformer. This ecircuit is
shown in Fig. 9-10. The six parameters are the three line lengths, two
turn ratios of the transformer, and Z. The circuit equations are

v+ v, +vs=0,

nlil + ’nz'ig d naia = 0,

i i 1 nine V1 Vo
1~ 2 = 5 — =)
Z\ n3 N1 Mo

when the positive directions for the currents and voltages are those
shown on the figure.

(29)

€)]

F1a. 9-10.—Equivalent circuit of an E-plane T-junction with a three-winding transformer.

The series impedance Z in Fig. 9-1b may also be placed in shunt with
the transformer. If the characteristic impedance of line (3) is chosen as
n2’/b, the circuit reduces to that shown in Fig. 9-4 at the proper reference
planes in the three lines.

9-6. H-plane T-junctions.—Junctions with three arms in which the
branching takes place in the H-plane may be discussed in a similar fashion
to E-plane junctions. For very long wavelengths, the junction is a pure

(3

zZ
t— @ —b-' Z (3)
1 _ T'_ __ [o, L 7 Q
m| a E @ @
| I . .
(@) ®

F16. 9-11.—H-plane junction and equivalent circuit at long wavelengths.
shunt junction. The coupling from the main waveguide to the branch

guide is by means of the magnetic fields. If the branch arm is at 90°
to the main line, the coupling will be from the longitudinal magnetic field
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in the main line to the transverse magnetic field in the branch line. Since
these fields are in quadrature with respect to the transverse electric field,
the junction behaves as a pure shunt junction only if a quarter-wave-
length line is inserted between the branch line and the main line. Figure
9-11a shows the junction, with the 2,
reference plane indicated. The

equivalent circuit is shown in Fig. 2y )
9-11b. The proper ratio of imped- Al

ances of the main line and the o= fvgg\ Z, - Z, °
quarter-wavelength line is the (1)

ratio of the transverse magnetic

field to the longitudinal magnetic o- °
field. The characteristic imped- Fie. 9-12.—Exact equivalent cireuit for an H-
ance of the quarter-wavelength plane T-junction.

line relative to that of lines (1) and (2) is therefore 2a/\,. As the fre-
quency 1s increased, additional circuit elements must be employed to
express the effect of higher modes at the junction, and the circuit becomes
that shown in Fig. 9:12. The values of the elements on the side arm will
depart from those of a quarter-wavelength line. Experimental values of
these parameters for A = 3.20 cm and a = 0.902 in. are

Z, = j0.17, Z, = j0.19,
Z, = —j1.04, Zy = 71.00.

The value of 2a/), is 1.002 for these conditions.
9-6. A Coaxial-line T-junction.—Stubs or T-junctions in coaxial line
have equivalent circuits that are similar to those of waveguide junctions.

5 (16 5
P - Rt plane ¥} =0.00745

ho
0.058" m
' 2.145" NS 6

(R4

Ref. plane Ref. plane )

1 : } ; 3
1 l‘I 1 10 —03
1 [

B =
2___! _____________ L____y 027 %, é/ ¥,=00216mho

: 20
|
1

@

(30)

o4

i
§ g le— 1.913"
a)

Dimensions of stub used. (b) Circuit.

Fig. 9-13.—Equivalent circuit of a coaxial T-junction.
Since the coaxial-line junction is physically like a shunt junction, it is
natural to employ a shunt equivalent circuit. The coupling is magnetic,
and no phase shift between the branch line and the main line would be
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expected for low-frequency waves. At high frequencies a junction
effect becomes important, which may be represented most suitably as
shown in Fig. 9-1 or 9-12. As an example of the circuit of a coaxial-line
T-junction, parameters measured® at a wavelength of 10 cm are presented
in Fig. 9-13. As expected, the reference planes for which the circuit
has a simple form are close to the junction of the inner conductors.
The reference planes in the main line overlap, as for the H-plane T.
The junction effect is represented by the shunt inductance and the ideal
transformer, and the effects of these elements are not large.

9-7. The T-junction with a Small Hole.—The theory of diffraction by
a small hole, discussed in Chap. 6, may be applied to two waveguides
joined together to form a T-junction whose arms are connected by a small
hole. It will be recalled that the theory proceeds from the assumption
that the field in the hole depends on the incident field only. Radia-
,,,,,,,,,,,,,,,, tion takes place from the hole into wave-
@ guide or into free space as though the

()

—Hm hole were an electric or magnetic dipole
] — or both, depending on whether the inci-
.}G}J ™3 dent field has an electric or magnetic
d " Ens component. For the irises discussed in
3 Chap. 6, a large reflection is produced

Fie. 9-14.—T-junction coupled with  hy the wall containing the hole and a
a small hole. . .
small amount of power is transmitted
through the hole. If a hole is located in the side wall of a waveguide
as shown in Fig. 9 14, power incident upon it from guide (3) is almost
totally reflected, but some power leaks through the guides (1) and (2).
Guide (3) appears to be terminated in a large susceptance given by

L= pE — MoH - ML),
where E, is the electric field in guide (3) normal to the hole, H; and H,,
are the tangential magnetic fields in the directions of the principal axes of
the hole, P is the electric polarizability, and M; and M, are the two
magnetic polarizabilities. The quantity S is a normalizing factor that
is equal to $(A\,/A\)ab for unit transverse magnetic field and for the
dominant mode in rectangular waveguide. It will be recalled that
this expression neglects the reaction of the load upon the matched
generator, whieh is small if B is large.

The power leaking into guides (1) and (2) is given by similar expres-
sions. If the amplitudes of the waves into guides (1) and (2) are denoted
by A; and A., respectively, then

*J. R. Harrison, “Design Considerations for Directional Couplers,” RL Report
No. 724, Dec. 31, 1945, Fig. 56.
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4,

- x% (PEsnE1n — M\HyHy — MoHnH1a),
Ay = — % (PEsnErn + M HyHy — MyHoyHi),

where the difference in sign results from the fact -that the waves 4,
and A4, are traveling in opposite directions.

If a wave is incident in guide (1) of the junction, a somewhat different
situation arises. The incident field excites a field in the hole which
radiates waves outward from all three arms of the T-junction. The
wave from arm (3) is given by
8
A; = A, F;l,

The wave radiated away from the hole in arm (1) is a wave reflected from
the hole. The amplitude is

By = T (PRY + MuH} — MaH,).

The wave radiated away from the hole in arm (2) produces only a small
change in phase in the incident wave. The amplitude is

_ Jr 2 2 2

A, = — ' (PE} — M ,\H} — M.H%)).
Sy
The hole in the side of guide (1) is therefore equivalent to a two-arm
junction with a scattering matrix having the elements
S12 =1+ A2, Su = Bl-

The scattering matrix may be replaced by an equivalent circuit in the
usual way. If a T-network is chosen for the circuit representation, the
elements are

Zio = 2(1 + A2)
270 B - 1+ 4%

— 2

Zu - Zn = Ag Bl

A —B):— 1+ 4n?

Since |42 and |By are small compared with unity, Z» js large and
Zu —Z2 is small.
If the T-junction of Fig. 9-14 represents an H-plane junction, then

. 2
B, = J2x <ﬁ> M, = A,,

Aab \2a
Zu - Z12 = 0,

.a% (a
% =000, (r>
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WAVEGUIDE JUNCTIONS WITH FOUR ARMS

Junctions in waveguide which have four arms have many special
properties that have proved to be particularly useful in microwave
circuits. Such junctions are related to the familiar bridge circuits at
low frequencies. These properites are fundamentally the result of the
high degree of symmetry that a four-junction may possess.

9.8. The Equivalent Circuit of a Four-junction.—It is easy to find
many equivalent circuits for a junction with four arms by proceding

(1)
F1G. 9:-15.—Equivalent circuit of a four-junction.

according to the general methods outlined in Chap. 4. One equivalent
circuit is shown in Fig. 4-37 and consists of six transmission lines con-
nected in shunt with four shunt admittances. A more useful form
results from the application of the general methods. Figure 4-38 illus-
trates a four-terminal-pair network with a core consisting of a four-
terminal network. If the four-terminal network of Fig. 4-34 is used for
the core, a general form for-the equivalent circuit of a four-junction
results. The circuit is shown in Fig. 9-15. The number of independent
circuit parameters is 10—the number necessary to determine the imped-
ance matrix completely. For the voltages and currents defined in the
figure, the impedance matrix can be found from elementary principles,
and the result is

Z= (31)
Zy Z,\Z,Y, ZVZY,+ Y, Z.Z.Y,
Z/\Z,Y, Zy Z2Z5Y, ZyZ(Y, + Ys)
Z\ZY1+Y,) Z,Z:Y, Zs3, AYN &
Z2Z,Y, ZZ(Y1+ YY) Z,Z.Y, /M

where ¥; and Y, are the admittances of the crossed circuit elements.




SEc. 9-9] DIRECTIONAL COUPLERS 299

From the form of the circuit or from the impedance matrix, certain
properties are evident. (1) With respect to a given arm, there is one
opposite arm and two adjacent arms. (2) The mutual impedance
between the opposite arms (1) and (3) can be made to vanish either by
making Z, or Z; equal to zero, a trivial case, or by making ¥, + ¥, = 0.
For this condition, however, the mutual impedance between arms (2)
and (4) also vanishes. (3) If the mutual impedance vanishes between
two adjacent arms, for example, (2) and (3), then Y, = 0, and the
mutual impedance between the other pair of adjacent arms (1) and
(4) also vanishes if the trivial cases are neglected.

Fig. 9-16.—’I:he circuit of the four-junction of Fig. 9-15 redrawn.

The analogy of the circuit of Fig. 9-15 to that of a Wheatstone bridge
may be made obvious by rearranging the components as shown in Fig.
9:16. The choice of arm (1) to represent the ‘“ battery”’ of the bridge is, of
course, arbitrary. The circuit could have been drawn with any arm in
this position. The relation that is maintained is that arms (1) and (3) are
opposite arms, as are arms (2) and (4). It would be possible to proceed
from this equivalent circuit to develop the interesting properties of
four-arm junctions. The method that will be adopted, however, is to
consider the scattering of waves falling upon the junction and to derive
the behavior in these terms.

9-9. Directional Couplers.—It is evident from the circuit of Fig. 9-16
that by altering the impedances connected to arms (2) and (4) it is
possible to balance the bridge. The impedances on arms (2) and (4)
may consist of matched loads together with some reflecting irises. In a
similar fashion, if proper irises and matched loads are connected to arms
(1) and (3), no power is coupled between these two arms. The wave-
guide junction may now be extended to include the irises. Furthermore
it is possible to choose the irises in such a way that no reflections are
produced when waves are incident in arms (1) or (2). Under these
conditions the device is called a directional coupler.
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A directional coupler is defined as junction of four transmission lines
(1), (2), (), and (4) such that with all lines terminated in their character-
istic impedances, the terminals (1) and (2) are matched and there is no

1 2

-_____le)édﬂl____—__‘

Fi1a. 9:17.—A directional coupler.

coupling between (1) and (3) and (2) and (4). The suitability of the
name can be seen from Fig. 9:17. A wave incident on the junction in
line (1) leaves by lines (2) and (4). A wave incident in line (2) leaves

Destructive z

interference{ ——___._ p—
3 t 4 l

L
Fig. 9-18.—Directional coupler with two incident waves, first case.

by lines (3) and (1). Thus the powers absorbed by matched loads on
arms (3) and (4) are indicative of the powers traversing the junction in
lines (1) and (2) in the two directions. The ratio of the power emerging
from line (4) to that incident in line (1) is called the coupling coefficient
of the directional coupler.

A directional coupler has several interesting properties. One of
these is that all the terminals are matched. The waves indicated by

1 2 dotted lines in Fig. 9-18 may be
S reversed in time and combined
with the waves indicated by solid

i ] T 77 arrows. If the amplitudes and

3‘ " ld phases of the two waves relative

~—— to each other are properly ad-

igf::f':fggg justed, the two waves entering

Fra. 9-19.—Directional coupler with two the junction at arm (1) can be
incident waves, second ease. made to cancel each other. All

that remains is a wave entering the junction at arm (3) and leaving it at
arms (2) and (4). Thus a wave incident on the juhction at arm (3) is
transmitted to arms (2) and (4) without reflection, and the terminal (3)
is matched. In a similar way it can be shown that terminal (4) is
matched. Thus all directional couplers are completely matched.

Another theorem of importance is that a junction such that two
noncoupling terminals are matched is a directional coupler. It may be
assumed that terminals (1) and (3) of Fig. 9-19 do not couple with each
other and are matched. Waves can fall upon the junction in lines (1)
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and (3) as shown by the solid and dotted arrows. If the phase and
amplitude of one of these waves are adjusted with respect to those of the
other wave, the two waves in line (4) can be made to cancel each other.
A reversal of time causes a wave to enter line (2) and leave at lines (1)
and (3). This is the same situation which is indicated by the dotted
arrows in Fig. 9-17, and therefore the junction is a directional coupler.

9-10. The Scattering Matrix of a Directional Coupler.—The scattering
matrix of a directional coupler is of the form

0 Sui0 Su
SZl 0 E S23 0

0 S0 Sul
S41 0 1 S43 0

S = (32)

The zero elements on the diagonal indicate that the junction is com-
pletely matched, and the remainder of the zero elements indicatethat
there is zero coupling between arms (1) and (3) and also between arms
(2) and (4). The remainder of the elements of S are not completely
independent but must be such as to make the matrix symmetrical and
unitary. The conditions thus imposed are that

Sjk = Skiy
[8122 + [8w|? = 1, } 33
and
S28% + S.a.8% = 0,
S1287 + S:8%, = 0. 6
From Egs. (33) and (34),
|12l |Saa| = isunsad,,
ISIZHSHI = |323H834|y (35)
and hence
[S1a] = |84, }
Sul =[Sl 39

Equations (36) state that the coupling from arm (1) to arm (2) is equal
to that from arm (3) to arm (4) and also the coupling from arm (1) to
arm (4) is equal to that from arm (2) to arm (3). Thus a wave incident
in arm (1) couples the same fraction of its power into arm (4) that a wave
in arm (2) couples into arm (3).

There is still a great deal of arbitrariness in the phases of the ele-
ments of S. This indeterminateness can be eliminated by the correct
choice of the locations of the reference planes. As an example, the loca-
tion of the terminal plane (2) may be chosen in such a way that S, is
real and positive,  Similarly the location of the plane of arm (4) may be
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chosen in such a way that S is positive imaginary, and the location of
the plane in arm (3) may be chosen so that Ss4 is positive real. From
Eqgs. (36), )

S12 = Sas = o, (37)
a positive real number. From Eq. (34),
aS¥ + Sua = 0; (38)
and from Eq. (38),
Sz = Sa1 = JB, (39)

where 3 is positive real.
Thus the scattering matrix becomes

0 a«i0 JB
a 0 Jﬁ 0
S=| - oo : (40)
0 j8:0 «a
B 0la O

The scattering matrix (40) will be regarded as a standard form for a
directional coupler. From the first of Egs. (33),

o + 8 = L.

A theorem that is of considerable importance may now be proved.
It has been shown previously that every directional coupler is completely
matched. It will now be shown that any completely matched junction
of four transmission lines is a directional coupler. If the junction is
matched, the scattering matrix is

0 Si2 Sz Su
Sa1 0 {8Saz Sas
S=] R . (41)

The location of the terminal planes may be chosen in such a way that S,

and S,; are pure real and positive and that S, is pure imaginary. Then,
since S is unitary,

8218:3 - S“S}ﬁ, = 0, .

— SuSE + SxSH = 0. (42,

It

If the first of Eqs. (42) is multiplied by Sai, the second by Sis, and the
difference is taken,

(Sgl - S;la)Sz;; = 0 (43)

Hence either Su vanishes and the junction is a directional coupler as
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already proved, or
82 = Si3 = a (44)

where « is a real positive number.
If « is substituted in Eqs. (42),

Ses = Sy = ]5, (45)

where 8 is a pure real number.
If these relations are substituted in Eq. (41), S takes the form

0 a E S13 ],B
a 0 ij8 8

S = | L . (46)
Sa J8 10 o

]B S42 E a 0

If the first row of the matrix (46) is multiplied by the complex conjugate
of the second column, and if the first column is multiplied by the complex
conjugate of the fourth row, then because S is unitary,

—jBS1a +j8SE =0
S5 + S, = 0. (47)
If neither « nor 8 vanishes, Egs. (47) imply that both S;3; and Sa. vanish.
This puts Eq. (46) into the same form as Eq. (40), and the junction is a
directional coupler. If either « orgvan-
ishes, the junction is also a directional
coupler. Thus the result has been ob-
tained that any junction of four trans- ‘ !
mission lines which is completely 3
matched is a directional coupler. \

| 4" Plunger

9-11. The Arbitrary Junction of Four
Transmission Lines.—It might be
thought that any junction of four trans-
mission lines could be completely
matched by a transformer in each of the Fic. 9-20.—Arbitrary junction of
four transmission lines and therefore four transmission lines.
could be made into a directional coupler. This cannot be done in gen-
eral, however, as will now be shown.!

Let us consider the arbitrary junction of four transmission lines shown
in Fig. 9-20. If plungers are inserted in lines (2) and (3) as shown in the
figure, then for any position of the plunger in arm (2) there exists a position
of the plunger in line (3) such that no coupling exists between lines (1) and
(4). The junction with the plunger in line (2) at some definite position is

1 This proof is due to R. L. Kyhl.
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reduced to a three-terminal-pair junction for which a plunger in one of the
remaining arms can always be used to decouple the remaining two trans-
mission lines. For such locations of the plungers, there exist standing
waves in each of the transmission lines (1), (2), and (3). If now the
plunger in line (2) is moved to a new location, there will again be a new

o
e

! 3
f/‘z

T1g. 9-21.—Positions of nodes in arms of  Fic. 9-22.—Linear combination of solutions.
four-junction for two positions of the
plungers.

position of the plunger in line (3) which causes line (4) to be decoupled
from line (1), and there are pure standing waves in lines (1), (2), and (3).
The nodes of the standing waves in line (2) must now be in a new position.
However, the nodes in lines (1) and (3) may or may not be in the same
position. In Fig. 9-21, the dotted lines marked ¢ represent one position
of the nodes, those marked b represent the other position.

Since these solutions represent pure standing waves, they are charac-
terized by the fact that the electric fields are everywhere in phase or
180° out of phase, as shown in Chap. 5. If none of the positions a and b
coincide, a linear combination of
these two solutions, taken with dif-
ferent time phases, corresponds to
running and standing waves in the
lines (1), (2), and (3). Only if the
nodes of the two solutions coincide
in one of the guides will the linear
combination be a pure standing
wave in that guide. The linear com-
bination of solutions is shown in Fig.
9-22. Since the waves in the guides
are not pure standing waves, the amplitude of a wave running one way
is different from that running the other way. This is indicated in Fig.
9-22 by the arrows of different length. Tt will be assumed that one long
arrow points into the network and two point out. If the converse condi-
tion were obtained, a time reversal would lead to the desired condition.
By the addition of matching transformers to the lines (1), (2), and (3)

Fi1a. 9-23.—Four-junction with matching
transformers.
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the conditions of Fig. 9-23 are obtained. The transformers set up the
standing-wave pattern of Fig. 9-22.

From a consideration of the terminals located on the transmission-line
side of the transformers in Fig. 9-23, it is seen that the new modified
junction is matched looking into line (2). Moreover, there is no coupling
between lines (2) and (4). The terminals of line (4) can now be matched
by the inclusion of a transformer in line (4). Thus both lines (2) and (4)
are matched, and there is no coupling between them. Hence, by an
earlier theorem, the junction is a directional coupler. Conversely, the
junction may be considered as a perfect directional coupler with trans-
formers that mismatch it in the four transmission lines.

Four transformers are actually not required ; it is easily seen that three
are sufficient. If the linear combination of the two standing-wave solu-

x\JL/JQ O
R

Fia. 9-24.—Behavior of a.degenerate four- Fia. 9:25-—Junction of two T's connected
junction. together.

-

tions is taken correctly, one of the lines, line (1), for example, can be made
to contain a pure running wave. Thus the transformer on line (1) is not
essential, and three transformers are sufficient to match the junction of
four transmission lines.

It should be remembered that the foregoing derivation hinges upon
the assumption that none of the nodes a and b in Fig. 9-21 coincide.
Since the plunger in line (2) is moved to a new positionr in going from
case a to case b, it is clear that the resulting nodes also move. Hence if
the nodes do coincide in one of the transmission lines, it will have to be
either in line (1) or in line (3). If the nodes a and b of Fig. 921 coincide
in line (3) and nowhere else, a linear combination of the two solutions
may be taken such that the waves are completely canceled in line (3).
The combination must be one with equal time phases. The resulting
linear combination is one with standing waves in lines (1) and (2) only,
as in Fig. 9-24. TFigure 9-25 is an example of a junction in which standing
waves are set up in lines (1) and (2) by a plunger in arm (2). It is to be
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noted that the junction of Fig. 9-25 is composed of two T-junctions con-
nected together by a transmission line ¢. The plunger in arm (2) is in
such a position as to decouple ¢

4 from arm (1).
It may turn out that the nodal
\ planes a and b coincide in both
NN ———"  lines (1) and (3). Thisis possible
1 —'/T‘

only if the waves are completely
absent from line (2). This im-
plies, however, that there are pure

2 standing waves in lines (1) and (3)
Fig. 9-26.—Behavior of a degenerate four- Wlt:h no “.’afves_u} th_e Other lln?s‘
junction. This condition is indicated in Fig

9-26.

The procedures just described could be repeated for a wave introduced
into line (4). A standing-wave solution analogous to Fig. 9-24 or 9-26
would be obtained. In each case the network is equivalent to a junction
of the type shown in Fig. 9-25 (the
lines need not be numbered in this 4
order) provided all degenerate
forms of Fig. 9-25, such as those
shown in Figs. 9-27 and 9-28, are

included.
oA . 1
To recapitulate, any arbitrary 3

junction of four transmission lines
can be represented either as a di-
rectional coupler with transform-

ers in three of the lines or as a 2

junction consisting of two inter- Fie. 9-27.—Equivalent form of a degenerate
. - four-junction.

connected T-junections. our-junetion

9-12. The Magic T.—A matched directional coupler with a coupling
coefficient of  has proved to be an extremely useful device for many
microwave applications and has become known as a magic T. The low-
frequency analogue of a magic T is the well-known hybrid coil used in
telephone repeater circuits. Such a device is indicated in Fig. 9-29.

Among the many applications of the magic T, the more important
ones are impedance bridges,! balanced mixers,? balanced duplexers,?
and microwave discriminators.*

A magic T can be realized in any one of a number of forms, in wave-

1Vol. 11, Chap. 9, Radiation Laboratory Series.
2 Vol. 16, Chap. 6, Radiation Laboratory Series.
3Vol. 14, Chap. 8, Radiation Laboratory Series.
4Vol. 11, Chap. 2, Radiation Laboratory Series.
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guides or in coaxial lines. One of the simplest of these forms is the com-
bination of an E-plane and an H-plane T-junction which is shown in
Fig. 9:30. A wave incident on the junction in arm (4) has even symmetry
about the symmetry plane, and the
transmitted power is divided with

4
even symmetry between arms (1)
and (2). No power is coupled to
arm (3), since no mode that has
even symmetry can propagate in
1 3
(o8]
0—o0(3) g 4
2 2)
Fic. 9-28.—Another form of a degenerate Fig. 9-29.—Circuit of a
four-junction. hybrid coil.

arm (3). There 1s also a reflected wave in arm (4). The reflected wave
can be matched out, however, by adding to the junction some post or iris
that does not destroy the symmetry
of the junction. A wave incident

. Symmetry plane in arm (3) possesses odd symmetry
’ and therefore excites fields in arms
(1) and (2) which have odd sym-

////”///\

Fi6. 9:30.—A magic T. Fia. 9-31.—DPositions of post and iris for
matching a }- by 1-in. waveguide T.

metry. No power is transmitted to arm (4), since arm (4) will not support
a mode with odd symmetry. To eliminate the reflected wave in arm (3),
a second matching device must be added to the junction. Figure 9-31
shows one method for matching the junction. The dimensions are given
for a wavelength of 3.33 em in - by 1-in. waveguide. The postis0.125
in. in diameter, and the iris 45 in. thick.
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The argument of the preceding section can be repeated with coherent
generators connected to arms (3) and (4) to show that in the matched
junction, arms (1) and (2) are also decoupled. It is easy to see that the
impedance matrix must have the simple form

0 0 1 1

_ J |0 0:—1 1
iy — I : 48)

1 -1 0 0

1 1 0 0

for the proper choice of reference planes. It may be shown that
Y=~-Z= -5,

since 22 = —|. An equivalent circuit of a magic T is shown in Fig.
9-32.

Another form of a magic T-junc-
tion is shown in Fig. 9-33. Three
of the arms are coaxial lines, and the
fourth arm is rectangular waveguide.

Arm 3 (waveguide)

=1

s
=

@)

(3

-3
N

;/l_'
(1) 2
@
o— O
Fi1g. 9-32.—Equivalent circuit of a magic T. Fi6. 9:33.—A magic T in coaxial line and
waveguide.

The symmetry of the junction ensures that there is no coupling between
arms (3) and (4). If the junction were matched, there would be no
coupling between arms (1) and (2). Many other! magic T’s can be
made from ring circuits, which are discussed in the next section.

9-13. Ring Circuits.—A four-arm junction may be equivalent to four
three-arm junctions connected together to form a ring circuit as in Fig.
9-34. The lines 1y, ls, 15, I; which interconnect the networks may have
arbitrary lengths and arbitrary characteristic impedances. If the series
transformer representation of Fig. 4-35 is used for each of the three-arm
junctions, the equivalent circuit may be reduced to a simpler form. The
series impedance elements of each three-junction may be combined with
the lines that interconnect the networks, with the possible exception of
one remaining series element. If the network possesses some symmetry,

! See also Sec. 12:24.
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this remaining element is also absent. The turn ratios of the trans-
formers may also be adjusted if corresponding changes are made in the
line impedances.

A ring circuit may be easily realized in waveguide by combining four
E-plane T-junctions as shown in Fig. 9-35 for a symmetrical case. If

{3
Ot -0
(3) o ﬁ,)(-ﬂ
la 7]
O—t— -0
(1) o ] 2)
[

Fi1a. 9:34.—A ring circuit made up of four three-arm junctions.

¥
@l b @
—bl . b|
) +n
M ib @

F16. 9-35.—A symmetrical ring circuit made of four E-plane T-junctions.

the distances between the reference planes are so chosen that each T-junc-
tion is a pure series junction and that each is separated by A,/4 from the
adjacent junctions, the device becomes a directional coupler of a common
form, sometimes called a double-stub coupler. If 3’ << b, the reference
planes may be chosen as shown in Fig. 9-6. The directional coupler is
matched if 3 has the value

. AN
e Y.
and the coupling coefficient C is given by
()
-
b (F)

If'b’ is verv small compared with b, b’ may be made equal to b and the
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coupling coeflicient is simply (b’/b)2. A simple equivalent circuit for
this directional coupler is shown in Fig. 9-36.

If the coupling coefficient of a directional coupler is equal to 4, the
device becomes a magic T. At long wavelengths, a magic T could be
made as shown in Fig. 9-37b from E-plane T-junctions. Shunt junctions,

b e which are the duals of the series

J(T) J (T) junctions, may also be used. A

o——TI FE———>0  gynthesis of a magic T in coaxial
l line is shown in Fig. 9-37a.

A still more general form! of
directional coupler in which each
line has a different characteristic
impedance can be constructed.
Such a device is illustrated sche-
]_(M’) , (9'_+_b") matically in Fig. 9-38 where only
- 9";"3 A simole o uiva.blent sireuit the characteristic impedances of
for the’.dire‘ct‘ional lcougler ()Cfx the kind shown the lines are indicated. There are
in Fig. 9-35. four parameters: the coupling co-
efficient C and three arbitrary quantities K, L, M. 1f C = 0.5, a magic
T is obtained.

The configurations so far discussed are composed of T-junctions
separated by quarter-wavelength sections of line. Another series of

I'16. 9-37a.- A magic T in ecoaxial line.
I'1g. 9:37h.—A magic T made frowmn E-plane T-junctions.

junctions results if one of the lines is chosen to be three-quarters of a
wavelength long. For example, a magic T composed of E-plane wave-
guide junctions is shown in Fig. 9-39. The four lines may also have
different characteristic impedances, and Fig. 9-40 shows the values that

!B, A Lippmann, “The Theory of Directional Couplers,” RILL Report No. 869,
Dee, 28, 1945,
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these impedances must have for the junction to be a matched directional
coupler.

9-14. Four-junctions with Small Holes.—The theory of the diffrac-
tion by small holes is useful in the discussion of several important types
of directional couplers. One example is the two-hole directional coupler
shown in Fig. 9-41, where the holes are spaced by a quarter of a guide
wavelength. The equivalent circuit is a special case of the ring circuit

_1~ %—————— MZ
12 F
3
(3) o 4)
KIV1-C
x% e o
LVI-C KYV1-C
S T
KLMy1-C
[43] - @)
%=1 K2t

Fia. 9-38.—A geuneral form of directional Fic. 9:39.—A magic T comnposed of
coupler in which each line has a different E-plane waveguide junctions.
characteristic impedance.

L2 Y I
KZLZ
o« \ (3)
\/l C \/l-
KLM \
. (2)
<————~3X 1
Zy =1 4 M?

T'16. 9-40.- -Values of impedances nccessary to make the junction of Fig. 9-39 a matched
directional coupler.
of Fig. 9-34+. The line lengths I, and I, are effectively zero, and 1, and I,
are one-quarter wavelength. The two waveguides are coupled by the
longitudinal magnetic fields, which excite magnetic dipoles within the
holes. If the holes are small, the dipoles are of equal strength and 90°
out of phase. The dipoles radiate into the second waveguide; but
because of spacing between the holes, the radiation is reinforced in the
direction of the original wave in the first waveguide and is canceled in
the opposite direction. Thus one arm of the junction (that containing
the termination in the figure) is decoupled from the arm in which the
power is incident. The amount of radiation from the holes may be com-
puted by the formulas given in Sec. 9-7. The interactions hetween the
holes are, of course, neglected in the formulas, whereas in practical
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directional couplers such as the one shown in the figure, the interactions
may not be negligible.

It is also possible to couple from one waveguide to another by two
holes so that the wave in the auxiliary line travels in the opposite direction

Fra. 9-41—Two-hole directional coupler.

to that in the main line. Such a device is shown in Fig. 9-42. Direc-
tional couplers of this type are called reverse couplers. The two coupling
holes are located on opposite sides of the center line, on the broad side
of one waveguide and on the narrow side of the other. The longitudinal

Fic. 9-42.—8chwinger reverse-coupling directional coupler.

magnetic fields that excite the holes are in the opposite directions. The
holes are spaced along the waveguide by a quarter of a wavelength,
and therefore radiation from one hole is reinforced by radiation from the
other for the wave traveling in the backward direction. The coupling
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coeflicient for this coupler also may be calculated from the small-hole
formulas if the proper relative values of the fields are inserted.

Another directional coupler, which operates on a different principle,
is shown in Fig. 9-43. This device is known as a Bethe-hole coupler.
Since the hole is in the center of the broad face of the waveguide, it is
excited both by the normal electric field and by the transverse magnetic
field in the waveguide. Both an electric dipole and a magnetic dipole
are produced in the hole, and both dipoles radiate in both directions into
the second waveguide. The electric coupling is an even coupling about
the axis of the hole, wheras the magnetic coupling produces fields with
odd symmetry. The strength of the magnetic coupling can be adjusted,
therefore, to be equal to the electric
coupling, by the rotation of one
waveguide with respect to the other.
The phases of the fields are such
that if power is incident on the cou-
pler in the lower waveguide from
the left side of the figure, the power
coupled into the upper waveguide proceeds in the direction of the arrow
labeled ““To detector.”

Design formulas for Bethe-hole directional couplers and for other
types as well are given in Chap. 14 of Vol. 11 of this series.

9-16. Degenerate Four-junctions.—In Sec. 9-11 it was shown that a
degenerate form of a four-junction that did not have the properties of a
directional coupler consisted of two three-junctions connected together
as in Fig. 9-25. To find the conditions on the elements of the impedance
matrix that must be satisfied in order that the junction be degenerate,
it is most convenient to find the impedance matrix for two T-junctions
connected together. If the terminals of one T-junction are designated
by (1), (2), and (3) and those of the other T-junction by (4), (5), and (6),
and if terminals (3) and (4) are connected together, then

To detector Main line
F1a. 9-43.—Bethe hole coupler.

V3 = Uy, ’1.3 = —‘7,'4.
These relations may be used to eliminate v,, v4, 5. and 7, from the network
equations. The result is the impedance matrix

7. VAR T ZisZss Z3Z 45 Z\3Z 44
Y ZgtZa 1 Zaa+Z44§ Zys+Zu Z3s+Z44
Loy — Z3, ZasZ s Z 237 4
. Zyy+Zay VATE VN Zsst+Zay
L ZiZes
g %5 _ ZLasZys
: B ZutZa Zss Zs+2Zy
s 7
; . Zss+Z 44




314 WAVEGUIDE JUNCTIONS WITH SEVERAL ARMS [Sec. 915

The characteristic feature of this impedance matrix is that the determi-
nant of the upper left-hand portion which is partitioned off is equal to’
zero. The corresponding determinant of the general impedance matrix
of Eq. (31) is
ZIZ3(Y1 + YZ) ZIZ4Y1 .
Z2Z3Y1 Z2Zq(Y1 + Yz)
This determinant is equal to zero if
(Yi+ V)2 = Y?
or
Yz = O, —2 Y 1.

When the admittance Y, = 0, the general equivalent circuit can be
redrawn in a way that makes evi-
6] dent the two three-junctions. This
circuit is shown in Fig. 9-44.
Another degenerate case of par-
ticular importance is that for which
Y:becomes infinite. Again the cir-
) cuit may be redrawn to make the
relationships between the lines obvi-
! ous. Figure 9-45 shows this cireuit.
Fie. 9-44—Equivalent cireuit for two 1he admittance Y’ consists of Z,

(2)

|
|
|
I
]
f

T-junctions connected together. and Z,1n parallel, or
1 1
YI = J—
z 7tz
and similarly
Y” = _1_ + l
Z, Z,
It is more customary to replace the Il-network formed by Y’, Y,
and Y, by the equivalent T-net- Zyy-2, 2y -7,

work. For the symmetrical case,
when lines (1) and (4) are identical
as are lines (2) and (3), the circuit
becomes that of Fig. 9-46, where
the network elements are labeled
with the values of the impedance
elements. The circuit of Fig. 9-46
is useful for symmetrical strue-
tures such as four waveguides Fia. 9-45.—Equivalent circuit for two sym-
joined together in the H-plane, metrical T-junctions connected together.

the H-plane cross (Fig. 9-47a), or the coupling of a coaxial line to a wave-
guide (Fig. 9-47b). Some values of the circuit parameters for the H-plane

2)
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cross are to be found in the Waveguide Handbook.! Unfortunately few
data are available for the transition from coaxial line to waveguide.

Zoyy—2Zy Zyy—2Zp

-

[o"
—0
Fic. 9-46.—Second form of equivalent circuit of Fig. 9-45.

The problem has, however, received considerable experimental? and
theoretical® investigation. If
suitable reference planes are 411
chosen, it is possible to reduce the
values of the series elements
(Zy1 — Zy4, for example) to zero.
9-16. A Generalization of the
Theory of Four-terminal Net-
works to Four-terminal-pair Net-
works.—By partioning the
impedance matrix of a four-termi-
nal-pair network, a formal exten-
siont to the usual four terminal
network can be made. The network equations may be written
v/ 2yl + Zyi,
V' = i’ + Zai”,

where the Z;;’s are portions of the impedance matrix Z, thus
P

|
o —f L
) U
@ ®)

Fic. 9-47.—Examples of junctions for
which the circuit of Fig. 9-46 is valid: (a)
H-plane cross; (b) coupling of coaxial line
to waveguide.

le Zuile Z“
7 |% TmiZn B 2 2
' ’
Zys Z23§Z33 Z 3y Zyy Ly

Z14 Z24EZ34 Z“

t Waveguide Handbook, Vol. 10, Radiation Laboratory Series.

2 Microwave Transmission Circuits, Vol. 9, Chap. 6, Radiation Laboratory Series.

3J. C. Slater, Microwave Transmission, McGraw-Hill, New York, 1942, Chap. VII:
“Properties of the Coaxial-wave Guide Junction in the 725A and 2J51 Output,”
BTL Report No. MM-44-180-4, Nov. 20, 1944; S. Kuhn, “The Coupling between a
Rectangular Wave Guide Carrying an He Wave and a Concentric Line,” ASE Report
No. M439, September 1942; L. B. Turner, “Impedance Transformer and Junction
Box for Cm-wave Coaxial Circuit,” ASE Report No, M522, June 1943.

1Lippmann, op. cit.
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and

H

1t should be noted that
Zu = Zu, 212 = zn, 222 = 222-

As in Fig. 9-48, a four-terminal network Z, may be connected between
terminal pairs (1) and (2) of Z and a second network Z, between ter-

Z) €4
SCars DUF
2 (C)]

Z, Z Z;

€,

(2

(1)

F1a. 9-48.—Circuit for matrix generalization of image impedance.

minal pairs (3) and (4), together with series generators ¢;, The network
equation then becomes

e = (Zu + Z)V + Zii",
e’ Zal! + (Zas + Zy)V,

e
e = [e]]’ e”
2

Z’ Z’ ZI/ Z”
Z = /1] l12 ) Z, = /1/1 /1’2] .
' (Z12 Z22] : [Z12 Z22

The solutions obtained for the currents are

"= (41 + Z) e’ — (Zy + Z8)1Z1o(Za + Z2)"'e”,
i —(Z:+ Z9)Zon(Ziy + Z)7e’ + (22 + 1

where

I
—_—
® o
]
N
-

i

I

Zi1n =27y — 212(222 + 22)_1221,
2y = 2y — Zn(Zyy + 2)2Z,,

are the generalized input impedances. The image impedance of the
four-junction may be similarly generalized, and the image impedances
Z’ and Z" are defined by

z 2y — Z1a(Zos + 2"y,
2" = Ly — Zo(Zyy + 225,

If a four-terminal-pair network is terminated by the image imped-
ances on each side, then

It
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" = }(2)te’,  fore” =0,
" = (2",  fore’ = 0.

From this equation, it is evident that if terminals (1) and (2) are to be
decoupled and terminals (3) and (4) are also to be decoupled, Z’ and
Z” must be diagonal matrices,

,_ |Z 0 v {Zs 0
2= z) -

The currents are therefore

€1 . €2

1y = Tz—ly 1g = 2Z2’ fore’” = 0,
he B g O "
13 = 2Z3’ 14 2Z4 for e 0.

Lippmann! has extended the development of the theory to the treat-
ment of chains of four-terminal-pair networks. The method runs
parallel to the corresponding treatment of chains of four-terminal
networks. An image transfer constant and a propagation constant
may be defined, and the generalization is essentially complete. A
somewhat similar problem arises in the consideration of a chain of
cavities connected in a ring that forms the resonator system of a strapped
magnetron.?

RADIATION AND SCATTERING BY ANTENNAS

The concept of a generalized waveguide junction which was estab-
lished in Chap. 5 may be extended to antenna problems. One terminal
of the junction is the transmission line connected to the antenna. The
other terminals are infinite in number and may be chosen in any of
several ways. The currents and voltages at these terminals or, alterna-
tively, the wave amplitudes form a representation of the electromagnetic
fields in the vicinity of the antenna.

9-17. Representation in Terms of Plane Waves.—The transmission-
line terminal of an antenna differs in no way from a terminal line of
any waveguide junction. A wave incident on the antenna through the
transmission line may be partially reflected, or the terminal may be
matched, and no reflection takes place. The amplitude of the reflected
wave may be expressed in terms of a scattering cocfficient or in terms
of a shunt or series impedance terminating the waveguide. If large
reflecting objects are near the antenna, the magnitude and phase of the
reflection coefficient in the transmission line depends upon the position
and nature of the reflector. In nearly all cases, however, such reflected

! Lippmaun, op. cii.

2 Bee Microwave Magnetrons, Vol. 6, Chap. 4, Radiation Lahoratory Series.
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power is negligible compared with the reflected power from the antenna
itself. As an example, the particular case of an antenna consisting of
the open end of a rectangular waveguide may be considered. At the
end of the waveguide the fields are distorted to satisfy the boundary
conditions, and both electric and magnetic energy is stored near the end
of the pipe. This stored energy produces effects equivalent to those

produced by a lumped suscept-

ance. Energy is also radiated,

€ — and this energy may be repre-
G B TE sented by a lumped conductance.
T The equivalent circuit of the trans-

o

mission line is therefore that
shown in Fig. 9-49a. In Fig.

(a) ) 9-49b the field near the end of the

Fia. 949.—The termination of a wave- DPipe is indicated. In the E-plane
guide or a parallel-plate transmission line in ShOWn, E-modes are excited and
free space. .

produce the equivalent of a capac-
itive susceptance. For a rectangular waveguide, H-modes are also
excited. The net effect is capacitive, however, for waveguides of the
dimensions usually encountered in practice.

Several cases of the abrupt termination of a transmission line in
space have been rigorously solved,! and the results are collected in the
Waveguide Handbook.* The conductance G may be regarded as the
relative conductance of space; its magnitude is of the order of (ka)?,
where k is the wave number and a a dimension of the waveguide.

The remaining terminals of the antenna are usually chosen to be
located a very large distance away from the antenna, and the wave
amplitudes of plane waves proceeding outward are taken as a repre-
sentation of the field. Thus the radiation pattern of the antenna is
commonly used to describe the antenna properties. The maximum
radiation intensity relative to an isotropic radiator that radiates the
same total power is called the gain of the antenna. The radiation
patterns of certain simple cases have also been rigorously calculated.

It is also possible to calculate the radiation from a small hole. For a
small hole at the end of a waveguide the value of B in Fig. 9-49 is the
same as that of an iris placed across the guide, and G is given by

21 ab),
G=3 5"

Certain general theorems may be proved about the radiation and
scattering from antennas, but it is more convenient to choose a different
representation for the terminals for this purpose.

1J. Schwinger, unpublished work.
2 Waveguide Handbook, Vol. 10, Radiation Laboratory Series.
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9-18. Representation in Terms of Spherical Waves.—It is convenient,
in dealing with infinities, to replace a nondenumerable set by a denumber-
able one. One way in which this can be done in the case of the radiation
problem is to expand the field quantities in spherical waves whose
angular dependence is simply related to the various tesseral harmonics.
The total electromagnetic field is determined by the amplitudes of these
various waves. This representation in terms of spherical waves is
equivalent to the introduction of terminals with incident and reflected
wave amplitudes for each of the spherical waves.

In a vacuum, the electric and magnetic field vectors satisfy the
same differential equation, namely, the wave equation,

a’E
VIE — ¢? Fri 0. (49)
By w? is meant the vector operator
vi=vVv: - v XVvX. (50}

[n terms of cartesian components, Kq. (49) reduces to the three scalar
equations
J*E;

AE; — ¢? —6?—’ =0, (51)
where A is the Laplacian operator. Tt is seldom useful to solve Eq.
(51), as the three solutions are not independent, being coupled by the
condition

v-E = 0. (52)

A solution of the scalar equation [Eq. (51)], however, can be used to
construet permissible solutions of Kq. (49) for certain special coordinate
systems. One such coordinate system is that of spherical coordinates.
The solutions are systems of spherical waves about the center of the
system.

It is convenient to assume a sinusoidal time dependence. Kqua-
tion (49) becomes, in the usual way,

VE + EE = 0. (53)
The scalar wave equation becomes
Au + k*u = 0. (54)

For any solution of Iiq. (54), there is a vector solution of Eq. (53) given
by

L = wvu (55)

It should he noted that Eq. (52) is not satisfiecd by L. However, L

can be used to construct solenoidal vector fields. TLet R be a radius
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vector from some fixed point. Then

M=RXL (56a)
and

N=vX®RXL (56b)

are solutions of Egs. (52) and (53). It should be noted that M is normal
to R. Because of the occurrence of R in Eq. (56), the coordinate system
in which this equation has the most simple form is the system of spherical
coordinates shown in Fig. 9-50.

Scalar Wave Equation.—In the spherical coordinate system Eq. (54)
becomes

10 ,0u 1 o (. . ou 1 8w | g,
723;(’ a?)+,~Tnea'o(S‘““’aa>+TV2sinzeaf¢z+’““'0- (57)

A set of single-valued solutions to this equation is

= PIPc08 0)0% . Zuuy ), (58)
where n and m are integers such that
nz0, m| £ n,
A P!™ (cos 6) is the associated Legendre poly-
/4‘_\__ nomial, and Z is a cylinder function. If the

tion, the field quantities must be finite at this
point and Z.,;; must be the Bessel function
Jat1s.  If the point r = 0 is excluded from
the region, Z,,.; may be a Bessel, Neumann,
or Hankel function. The details of the
X/<)\\‘ Y solution. of this equat.ion, toget}.ler with the
@ properties of the various functions, may be
Fig. 9:50.—System of spherical found in many places! and will not be dis-
coordinates. cussed here.
The associated Legendre polynomials have the form
1 — g?)ym™2 grtn(g? — 1)»
2"n! drmm

— 3 origin lies inside the region under considera-
|
!
!
|
)
-
|

Py = ¢

) (59)
where r = cos 8. Some examples of these polynomials are
P =1, P} = cos 9, Pl = sin 6,
P} = $(3cos® 8 — 1),
P} = 3 sin 6 cos 6,
P? = 3 sin? 6.

1 H. Margenau and G. M. Murphy, The Mathematics of Physies and Chemistry,
Van: Nostrand, New York, 1943.

(60)
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The functions e™P!™ (cos 8) are called tesseral harmonics and have
the important property of orthogonality. It may be shown that

T 2
f / eim*Pm(cos §)e’?*P'?P/(cos 6) sin 6d0d¢ = 0 (61)
o Jo
forp == m and/or g # n.
The behavior of the various eylinder functions for large values of kr

will shed some light on the physical meaning of Eq. (58). It is easily
shown that in the limit z — «,

Jary(z) = \/;E; cos (:c -7 +21 T),
Nopul(z) = \/7sm( n+ lw),

(62)
Hop V() = \/_ (=g)m+ter=,

HoyyP(z) = | (.7)"“6"z

It is clear that a solution with a Bessel or Neumann function for its
radial dependence represents a spherical standing wave. The two
Hankel functions represent running waves that either diverge from the
origin or converge upon it. It is clear that a wave running out from the
origin requires a source, and this is a physical reason for the necessity
of excluding the origin in the case where the radial dependence is that
of a Hankel function.

Vector Wave Equation—Each of the solutions [Eq. (58)] of the
scalar wave equation can be used to generate solutions of the vector wave
equation as in Eqgs. (56a) and (56b). Let

an = R X vumﬂ, (63)
Npn = VX (R X Vitwn). (64)

These are solenoidal solutions of the vector wave equation [Eq. (53)].
It is to be noticed that M,., is normal to R. For this reason, a solution
for which M,., is the electric or magnetic field is called transverse-
electric or transverse-magnetic respectively. It should be noted alsc
that if the electric or magnetic field is M., the corresponding magnetic
or electric field is of the form N,...

It may be demonstrated that the set of waves of Eqgs. (63) and
(64) forms a complete set of solutions of Maxwell’s equations which, for
empty space, vanish at infinity.

In addition to this completeness property, the set of solutions given in
Eqgs. (63) and (64) have the important property of orthogonality. Thisis
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the same orthogonality property which was invoked in the case of a wave-
guide with several propagating modes. Because of the orthogonality of
the functions in Kgs. (63) and (64), the stored electric or magnetic
energy inside a simply connected charge-free region is equal to the sum
of the energies computed for the various modes. Moreover, the power
entering or leaving the bounding surface is equal to the sum of the
powers computed for each of the spherical waves.

9-19. Solutions of the Vector Wave Equations.—Since the magnetic
field may always be determined from the electric field, it is necessary
to consider only the electric field in a description of the electromagnetic
field in a charge-free space. It is convenient to use Hankel functions in
the description of the field. Let us consider the description of one of
the spherical waves of the set of Eqgs. (63) and (64),

Mon = R X Vit (65)

The occurence of the complex function e¢™¢ in Eq. (58) is inconvenient.
Therefore a new set of waves may be defined,

1
M:nn = 2 (Mnn + M—ﬂn;ﬂ))

., 1 (66)
an = f] (Mﬂm - M-vn:n)-
Consider the wave
M., = R X Wu'ma,
u,, = P,'™(cos 6) cos me 1 Z ppri (k). (67)

vV
The solutions M’ are even in ¢, and the solutions M’* are odd in ¢. The
function Z,,,, will be assumed to be a linear combination of the two

Hankel functions,
Zavis = aHupys ™ + bHryys™. (68a)

In case the region includes the origin, the field at the origin must be
finite, Zn1 must be a Bessel function, and

a=b. (68b)

If there is an antenna at the center of the region, the origin must be
excluded and then there is no simple relation between a and b. However,
the various a’s and b’s are linearly related to each other, and it is pos-
sible to define a scattering matrix that relates the various incident
waves to the scattered waves. This is completely analogous to the scat-
tering matrix that was defined in Chap. 5 for generalized waveguide
junctions.

It is convenient to introduce a single index instead of the double
index of M’,.. The way in which this is done is of no particular impor-
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tance. However, for purposes of definiteness let the new subsecripts be
-assigned according to Table 9-1.

TaABLE 9-1.—REPLACEMENT OF DOUBLE SUBSCRIPTS BY SINGLE SUBSCRIPTS

Subscript| Mode Mode character

Electric dipole

Magnetic dipole

s N N

The subscript 1 will refer to the terminals in the transmission line that
excites the antenna. As in Chap. 5, eolumn vectors will be introduced
to represent the incident and scattered waves. Let

‘a, bl

a= , b= (69)

These vectors have an infinite number of dimensions. It is convenient
to normalize the a’s and b’s in such a way that faka, represents the
power incident on the antenna in the nth mode. Since the a’s and b’s
are linearly related, a scattering matrix S may be defined such that

Sa = b. (70)

The methods of Chap. 5 can be used to show that S is unitary and
symmetrical. However, it is worth while to arrive at these results
in a simpler way. Since

S¥a* = b* = a*§,
then (71)
a*§*S*a = b*b.
But 3b*b is the total power scattered by the antenna, and it must
equal the total incident power §a*a. Therefore

2*§*Sa = a*a. (72)
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Since Eq. (72) applies independently of the vector a,
§*s = |, (73)

or

§* = 81, (74)
Thus S is a unitary matrix.
To show that S is symmetrical, it should be noticed that for any
solution of Maxwell’s equations for zero loss there is another one with
time reversed. For example, if

E(r, 8, ¢, 1) = 2 Re (M, e™) (75)

is a solution,

E(r,8, ¢, —t) = 2 Re (M[,.e77!) = E Re (M)

m,n mn

is also a solution. However,
M, =
RXvw {P‘,{’"(cos 6) cos mo

— [a H®(kr) + b H“)(kr)])
\/
and (76)
My, =

RXv [P‘"“(cos 6) cos me —

.\/

Thus from Eq. (76), if Sa = b represents a solution of Maxwell’s equa-
tions, then another allowable solution is

[a* H® (kr) + b*H‘”(kr)]}

Sb* = a*, 77)
The complex conjugate of Eq. (77) is
S*b =
or
S*-'a = b; (78)
therefore
S*-1 = §, (79)

If Eq. (79) is compared with Eq. (74), it can be seen that

§=8 (80)
and S is symmetrical. It should be noticed that the symmetry property
depends upon the fact that the angular dependence of M’ is pure real.

9-20. Scattering Matrix of Free Space.—When there is no antenna,
the wave amplitudes a; and b, are meaningless and consequently the
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scattering matrix has its first row and column omitted. The relation
Eq. (68b) requires that the remainder of the scattering matrix be just the
identity matrix

1

Su : (81)

9-21. Scattering Matrix of a Simple Electric Dipole.—Assume that an
electric dipole radiates the mode Mj,, and that it is matched to its
transmission line. It may be assumed also that the antenna does not
affect any of the other modes. The scattering matrix is

00 . .

00 . .| (82)
10 .. .

0 1

It should be noted that the assumption that the antenna is matched
and radiates only mode (2) determines the first column of matrix (82).
The second column follows from the symmetry and unitary property of
S. The first two rows are fixed by the symmetry of S. The remainder
of the matrix is fixed by the assumption that the antenna does not disturb
the other radiation modes. It hasthe same form as Eq. (81).

Such a dipole antenna will absorb power only from the one dipole
mode that it radiates. It also absorbs all the power incident on the
antenna in this mode. If a plane wave falls on the dipole antenna, the
antenna absorbs the one dipole mode and leaves the rest of the wave
undisturbed. The absorption of the dipole mode may be described as a
dipole wave radiating out from the antenna and having the right ampli-
tude and phase to cancel the dipole component in the plane wave. This
negative wave will be called the scattered wave. Scattering of this type
may be described by the matrix

§=8—-8§, = el —1 i 0 ) (83)
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It should be noted that the power scattered by the antenna is equal to
the power absorbed by the antenna, independently of the type of wave
falling on the dipole.

9-22. The General Antenna.—The scattering matrix of a general
antenna that is assumed to be matched to its transmission line is

S = S?l ;SZZ - - -1, (84)

There are a few interesting things to be seen about matrix (84). The
first of these is the reciprocity property. Since

Snl = Sln, (85)

an antenna that absorbs |S:.[* of the power incident on the antenna in
the nth mode also radiates |Si.)> of the total radiated power in this
mode. Similarly, there is a reciprocity for the scattering of one mode
into another by the antenna.

For a unit incident wave in the antenna line, the wave radiated by
the antenna is
0
81
Sa

b, = (86)

Because of the unitary property of S, a wave incident on the antenna such
that

0

21
*

a; = 79| = by (87)

will be completely absorbed. It will be recognized that a; is just b, with
a time reversal.

The general antenna is not of great interest. Its generality is so
great that any pile of tin with a transmission line exciting it may be
called an antenna. It is evident on physical grounds that such a pile of
tin does not make a good antenna, and it is worth while to search for some
distinguishing characteristics that can be used to differentiate hetween an
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ordinary pile of tin and one that makes a good antenna. When the
properties of a good antenna are considered, the only one that stands
out is the general economy of metal. A good antenna does not have an
ensemble of metallic ears, flaps, and springs that play no useful role in
the business of radiating. In other words, there may be two antennas
that have identical radiation patterns. One of them may have miscel-
laneous structures attached to it that are not necessary. Since the
radiation patterns are identical, the patterns cannot be used to distinguish
between the antennas. It might be expected, however, that one antenna
would scatter more than the other. It is worth while therefore tosee
what can be done in the way of differentiating between a good and bad
antenna on the basis of scattering.

9-23. The General Scattering Problem.—1It is convenient to break the
scattering matrix of a general antenna into two parts

S = Sl 'Jl' Sg, (88)
where
0 é Sn
S, = SZI:E , (89)
! : 0
0} 0
s
S, = 00 . (90)

Similarly, it is convenient to break the column vectors a and b into two
parts

a=ab 4 a?, (91)
a; 0
0 asg
aw = g ,  aw = % (92)
0

The quantities of interest are

Power radiated by the antenna = 3V *aw,
Power absorbed by the antenna = }§®*S§¥S,a®,
Power scattered by the antenna = [(S, — Da®@]*[(8, — 1)a®].
(93)
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The eigenvalue solutions! are convenient for the calculation of scattering,.
Let
Sa, = s (94)

where the a; are a complete, orthogonal, and real set of eigenvectors.
The column vectors a; are normalized in such a way that
ikak = 1. (95)

Thus for each of these eigensolutions, the power radiated by the antenna
is

zag*a = iaf, (96)
where a; is the first component of the k** eigenvector.
Likewise, the power absorbed by the antenna is

$32*S18,a2 = isisal. 97)
If
fi = (82 — )a@, (98)
the scattered power is
1f¥f (99)
However,
fr = (S — Da, — Sia® — (S — ha, (100)
fy = (s — Da, — S;a2 — (S — Nay, (101)
but
S.a® = s.al,
and
S.ah = 0.
Therefore

fi = (s — Day — s + a — S,aP
= (s — Da@® — Sap. (102)

If the first column of S is designated by the column vector

0
S2
r=1-1, (103)
then S,ay’ = axr, and therefore
fk = (Sk — 1)&12) — ar. (10—”

The scattered power is § of
fife = (s¥ — D(sx — Dar®a® + air*r — (sf — Daa@*r
— (s — Day*a®.  (105)

! 8ee Chap. 12 for the mathematical formulation of eigenvalue solutions.
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Since a, is pure real,

ﬁ},”*r = ?a;}’ = Sklg,

*a® = ska. (106)
Also
. P =1,
fife = (sf — D)(se — DE&PaP + [1 ~ (sf — L)si — (sx — D)sflai.  (107)
It should be noted that

[aPaPl(F*r) = [aPr][F*aP]. (108)

From Eqgs. (106) and (108)

aPa 2z stsal = a;
therefore

frfe 2 (s — (s — 1) + 1 — (sF — 1)sg — (s — 1)s}]ad,
ffe 2 [2 — sfsila} = o (109)

Thus the scattered power for an eigensolution is always equal to or greater
than the absorbed power.

9-24. Minimum-scattering Antenna.—A minimum-scattering antenna
will be defined as an antenna for which the scattering is a minimum for
each eigensolution. Under this condition, Eq. (109) becomes an equality
for all k. It is to be expected that of all antennas producing a given
radiation pattern, any minimum-scattering antenna will be the least
like a pile of tin. However, it remains to be seen if any arbitrary antenna
pattern can be obtained with a minimum-scattering antenna.

In order for f¥f, = a} in Eq. (107), either

apap = of (110)
or

It is clear that Eq. (111) cannot be satisfied for all k, as this would yield
the identity matrix for the scattering matrix and this corresponds to no
antenna at all. In order for Eqgs. (106), (106a), and (110) to be satisfied
for some value of k (¥ = 1, for example) it 1s necessary, however, that

a? = elvar¥, (112)

where the phase factor v is real.
If Eq. (112) is multiplied by S,
S:a? = ema,Sir* = eal;
but
818(12) = sla‘f’.
Therefore ’
s = e, (113)
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Now either the remainder of the eigenvalues are equal to unity, or
there is another eigenvalue

89 # 1, (114)
but then
iy?a? = al. (115)
Because of the orthogonality of the eigenvectors,
ara, = 0, (116)
aF?aP® = asa;, (117
and
aP = —eaqr*; (118)
also
Sy =-—8 = —ev, (119)

This exhausts the class of all eigenvectors with eigenvalues not equal to
unity. This follows because Eqs. (112) and (118) are the only pure real
vectors of thisform. The remaining alternative, with

s2 =1, (120)
will be considered later.
The scattering matrix may be computed as follows:

S = TS, T, (121)

where T is a matrix with the eigenvectors normalized to unity as columns
and S; is a diagonal matrix with eigenvalues as entries. From Eq. (110)
it can be seen that for the eigenvectors normalized to unity which satisfy
that equation,

o = loaf = —
1 2 \/2
It can be assumed, without loss in generality, that a; = a; = ~\;—§ In
order to simplify the notation let
1
1 o2
a; = —— [93].
1 > 1. (122)
Then
11
i gz —Q2 :
T=—_|9 —9} 123
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81 0 0 0
0 — 381 0 0
0 0 10
S« =10 0 01 (124)
Equation (121) can be written as
§=T@:— HT* =1 (125)
Since B
Tt =T, (126)
Eq. (125) is easily evaluated.
(s1 — 1) —(s+1) 0 0 1 ¢ g3
(s — 1)ga (s1+1)ga 0 0O 1 —g2: —gs
S =1 (si — )gs (si+1)gs 0 O
+1, (127)
-1 8142 8193
S92 —gi —g
§ = |09 e —gi el (128)

Equation (128) can be simplified somewhat by choosing the terminals in
the antenna transmission line in a new place. It is possible to choose this
location so that
s1 = +1; (129)
then
0 g2 g3
g: (1 —g8) —gus

It will be recalled that there was a second alternative to Eq. (114)
which is that

s2 = 1. (131)




332 WAVEGUIDE JUNCTIONS WITH SEVERAL ARMS (Sec. 924

By following through a procedure analogous to that leading to Eq. (128),
it may be shown that the condition

Su =0 (132)
requires that

s = —1, (133)

and this leads to a scattering matrix of the form Eq. (130).

The scattering matrix (130) has some interesting properties. It is,
for one thing, pure real, and this introduces a symmetry in the antenna
pattern. To see this, note that if a is the column vector of a plane wave
incident on the antenna, then a* is the column vector of a wave incident
from the opposite direction. Thus if

Sa = b, (134)
then
Sa* = b*,

Thus the components of b* differ only in phase from those of b, and the
gain of the antenna in one direction is identical with that in the opposite
direction.

Another property of antennas to which the scattering matrix (130)
applies is that they scatter radiation with the same pattern that they
normally radiate. To see this, it should be noted that the radiation
pattern of the antenna is given by the first column of matrix (130).
On the other hand, the matrix that represents the scattering of the
antenna is
0 0

= g |,
S:— 8 = 0 —g:0s —¢i : (135)

This matrix is of such a form that any column vector operating on it
yields a column vector of the form

where ¢ i1s some number.
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It can be easily verified that the scattered power is always equal to
the absorbed power, independently of the mode of excitation. If the
incident wave is represented by

a=1]" (136)

the power absorbed by the antenna is

P, = 3(ra)*(ra), (137)

where r has the same significance as in Eq. (103). The power scattered
by the antenna is

P, = §{(S: ~ Sl ((S: - Sual
= 3{(fa)F]*[(Fa)r]
= {(fa)*(ta). (138)
Thus the scattered power is always equal to the absorbed power.

To recapitulate, a minimum-scattering antenna has identical gain in
opposite directions. It scatters with the same antenna pattern that it
radiates. It always scatters the same power it absorbs. A dipole
antenna is an example of such a minimum-scattering antenna.



CHAPTER 10
MODE TRANSFORMATIONS
By E. M. PurceLL anp R. H. Dicke

Waveguides are usually designed to have only one propagating mode
over the frequency range within which operation is intended. In the
neighborhood of discontinuities in the guide, to be sure, the electromag-
netic field cannot be described by a single mode, but the higher, non-
propagating modes that are there excited die out quickly with distance
from the region of the discontinuity, and only the dominant mode,
represented by a wave running in each direction, remains. As has been
seen, this circumstance greatly simplifies the analysis of waveguide
circuits, for it allows any length of guide of uniform cross section to be
treated as a simple transmission line. In many instances, however,
the waveguide-circuit designer must concern himself with the properties
of guides that admit more than one propagating mode at the frequency
used. Some of the practical reasons for interest in such questions are:

1. The special types of symmetry that some of the higher modes
possess can sometimes be utilized to advantage. The waveguide
rotary joint based on the axial symmetry of the TMo-mode was
the first such application and remains one of the most important.

2. The attenuation of a running wave in a waveguide, which is the
result of the finite conductivity of the walls, decreases as the wave-
guide is enlarged in cross section for a given frequency and a given
mode. When attenuation is unusually costly, it may be desirable
to use for transmission either the lowest mode, in a guide too large
to prevent propagation of other modes, or a higher mode such as
the TEy-mode for which the decrease of attenuation with increasing
guide dimensions is exceptionally rapid.

3. In waveguides of circular cross section there is no single lowest
mode. Rather, for any arbitrary choice of a direction perpendicu-
lar to the axis of the guide, there are two modes with identical
cutoff wavelengths distinguished by the polarization which may
be parallel or perpendicular to the reference direction.! Propaga-
tion of this type provides the guided-wave counterparts of the

1 The lowest mode is likewise double, or degenerate, in this sense for a guide whose

cross section is a square or any figure of 4n-fold symmetry, but the choice of axis is
then not wholly arbitrary.
334
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multitude of effects associated with elliptically polarized light and
lends itself to a variety of uses.

From a theoretical point of view the propagation of two modes,
rather than just one mode, in a uniform guide is a subject of limited
interest. [t was pointed out in Sec. 2-18 that the normal modes are
orthogonal and should therefore be treated entirely independently, at
least in regions remote from discontinuities or nonuniformities in the
guide. Thus, the problem of a uniform guide carrying power in, for
example, n modes is formally identical with the problem of n separate
guides each permitting propagation in its fundamental mode only, these n
guides being connected together in various ways at certain junection
points. The latter may be thought of as corresponding to discon-
tinuities or irregularities in the guide carrying many modes simultane-
ously, since they serve to transfer energy from one mode to another.
It is these junctions which will demand most of our attention in this
chapter. Such a junction will be referred to as a mode transducer. This
is a broad and rather loose use of a term which in circuit theory is custom-
arily applied only to two-terminal-pair networks.

10-1. Mode Transducers.—The early literature on waveguides! con-
tains many descriptions of means by which a particular waveguide
mode can be excited. Usually the means suggested involve one or more
antennas projecting into the guide and driven in appropriate phase
relation to one another. This technique is illustrated by the elementary
examples of Fig. 10-1, which shows how the TE:-mode in a rectangular
waveguide might be excited from a coaxial line.

In Fig. 10-1a the coaxial line is made to branch at 4 into two lines
that are carried above and below the guide, respectively, to drive antennas
B and C. These antennas are displaced by the same distance S/2 on
either side of the center of the guide; and because they are driven in
phase, the total length hack to the junction A being the same for each
branch, there is no excitation of the fundamental 7TFi;-mode. The
TE.-mode, however, is excited. If the dimensions of the guide are so
chosen as to permit propagation of the TFE,»~ and TE-modes only,
transmission will actually be effected only by the TEy-mode if it is
assumed that perfect geometrical symmetry has been realized.  Several
adjustable parameters are available, notably d, &, and S In the figure, by
which one might hope to satisfy some additional electrical requirement,

t R. 1. Sarbacher and W. A. Edson, Hyper and Ultrahigh Frequency Engineering,
Wiley, New York, 1944, Sec. 6-14. p. 201, Sec. 88, p. 309: J. G. Brainerd, G. Koehler.
H. J. Reich, and L. F. Woodruff, Ulira-high-frequency Techniques, Van Nostrand, New
York, 1942, Chap. 14, p. 479: F. E. Terman. Radio Engineers’ Handhook, MeGraw-
Hill, New York. 1943, Sec. 3. p. 261,
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such as that of an impedance match looking into the coaxial input line
when the waveguide has a reflectionless termination.

In Fig. 10-1b a similar transformation is effected in a different way.
The antennas B and C are brought in from the same side of the guide and
symmetrically disposed but are driven exactly out of phase, the line AC
being made just one-half wavelength longer than AB. Again the
TE,~-mode is excited, and the TE;-mode is not. Whereas in the device
of Fig. 10-1a the achievement of “mode purity,” that is, the freedom from
excitation of the TEmode, depends on geometrical symmetry only,

a

Fia. 10-1.——(E)201tati0n of the TE»-mode from a coaxial line.
this is not true of the cireuit of Fig. 10-1b. The extra section of line,
nominally one-half wavelength long, will vary in electrical length if the
frequency is changed. Thus, if extreme mode purity over a band of
frequencies is a requirement, the scheme b is not a good one. This
illustrates one of the practical considerations that influence the design of
mode transducers.

There is  another difference between the circuits of Fig. 10-1a and b
which should be noted in passing. If the waveguide were large enough to
allow still higher modes to propagate, these would, in general, not respond
in the same way to excitation by the two probe arrangements a and b.
The TEj-mode, for example, the field configuration of which may be
found in Fig. 10-2, would be excited by the system of Fig. 10-1b but not
by that of Fig. 10-1a, whereas the converse is true for the 7E;-mode.
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The essential difference between the antenna configurations a and b of
Fig. 10-1 is that the former is symmetrical about a line or axis running
longitudinally down the guide whereas the latter is antisymmetrical about
a vertical plane through this axis.

Schemes of this sort can be elaborated in nearly endless variety.
Also, use could be made of suitably placed current loops rather than the
antennas of the electric type shown in Fig. 10-1. * There are, however,
difficulties associated with loop antennas if strong coupling—for example,
an impedance match—between transmission line and waveguide is
desired. In this case the loops are necessarily large, and large loops do
not behave as simple magnetic dipoles.

The methods thus far discussed have not actually found wide use in
microwave engineering for the
reason that their application is con-
fined to transitions between coaxial
line and hollow waveguides. If it
is desirable to use hollow wave-
guides for transmission because of
the advantage in power-handling
capacity or because of their con-
venient size, it is usually desirable Fie. 10-2—TField configurations for the

T Exn-mode.
for the same reasons to exclude even
short sections of coaxial line from the circuit.

Waveguide-to-waveguide transitions, with a change in mode, are
sometimes effected in a manner that resembles the multiantenna method
already described. Figure 10-3 shows a transition from the TEj- to
the TE,-mode in rectangular guide. The coupling between the guides is

®
F1a. 10-3.—Coupling from the TE:o-mode in one waveguide to the TE:r-mode in another
by means of small holes.

effected by two small holes separated by a distance equal to one-half the
wavelength of the TE,-mode in guide (1). If the holes are not too large,
the magnetic field in one hole due to a wave in guide (1) will be just
opposite to the field in the other, which is the condition required. for
excitation of the T'E,-mode in guide (2), without simultaneous excitation



338 MODE TRANSFORMATIONS [Sec. 10-1

of the TE;;rmode. The coupling is weak, however; that is, a wave
entering guide (1) will be almost totally reflected, only a small fraction
of the power being transferred to guide (2) when guide (2) is provided
with a reflectionless termination.

If strong coupling is desired—{or definiteness, let us say a matched
ccadition—two courses are open. The nearly total reflection could be
compensated by an impedance-matching element, which could be placed
in either guide. For example, an inductive iris might be included in
guide (1), as in Fig. 10-3b. In effect, this creates a resonant cavity at
the end of guide (1). The matched condition would be attained only
over a very narrow frequency range, and the resistive losses in the part
of the guide that forms the cavity would be greatly increased, as would the

Plunger

(@) ()

Fi1a. 10-4.—Matched mode transducer from the TEi¢ to the TE-mode.

electric field strength, for a given power transfer. For some purposes,
however, this might not be objectionable.

The original transducer can be altered in another way, by enlarging
the coupling holes. 1If this course is pursued in an effort to obtain a
matched mode transducer, the elementary explanation of the action of
the two coupling holes soon loses its validity. Instead, there exists a
complicated field configuration not easy to analyze, and there is no longer
any assurance that only one mode will be excited in guide (2). Never-
theless, it may be possible to achieve the desired result by a cut-and-try
procedure, in which one or more geometrical parameters are systematic-
ally varied and their effect upon the impedance match and upon the
excitation of the unwanted mode in guide (2) is examined. Perhaps the
simplest example of this treatment is shown in Fig. 10-4. Here the entire
wall common to the two guides has been removed. A plunger in guide (a)
provides an adjustable parameter which is found, experimentally, to
control the excitation of the TE ;-mode to a considerable degree. In one
specimen of this type, the fraction of the power incident on the junction
from guide (1) which was transferred to the TE;,-mode in guide (2) could
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be reduced to 0.001 by adjustment of the plunger. At this plunger
setting, moreover, the reflection of incident power was not large and could
be eliminated by a relatively minor impedance transformation introduced
ahead of the junction in guide (1).
The final junction, shown in
Fig. 10-4b, belongs to a class of
mode transducers of considerable
importance in microwave engi-
neering. Such transducers are
characterized by an abrupt change
of mode effected in a space that
is closely coupled to both input
and output pipes. The stored
energy associated with this region Fic. 10-5.—Transducer from the 7'E1o- to the
is small, and as a result the TMo-mode.
properties of the junction do not change rapidly with frequency (Chap.
5). The transducer shown in Fig. 10-5 belongs to this class also; it
effects a transformation from the TE,r-mode in rectangular guide to
the TMy;-mode in round guide.

(z)

| >
\ ()

Frg. 10:6.—Mode transducers that employ a taper from one mode to another. (a) Rec-
tangular-to-round transition, (b) transition from the TEio- to the TEz-mode.

A different approach to mode-transducer design is suggested by the

tapered transmission line. It has already been pointed out (Chap. 6)

that waveguides of different characteristic impedance can be joined in an
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almost reflectionless manner by means of an intermediate section in
which a gradual change from the dimensions of one guide to those of the
other takes place. Provided this tapered section is at least a few wave-
lengths long or, more precisely, if the change of cross section per wave-
length is slight, propagation through the composite guide occurs with
very little reflection over a wide frequency band. This principle is
applied in the “rectangular-to-round” taper frequently used to connect
a rectangular guide operating in the TE-mode to a guide of circular
cross section operating in the TH;;-mode (Fig. 10-6a). Since the two
modes involved have essentially the same character, this device scarcely

TEy

Fig. 10-7.—~Transducer for converting from TEs-~mode in rectangular guide to TEo-mode
in round guide.

deserves to be called a mode transducer. Fig. 10-6b shows a ““taper” by
which the transformation from the TE~ to the TFEs-mode can be
effected in a gradual manner. The operation of this taper should be
self-evident if the reader will notice that the abrupt cessation of the
dividing wall at A can have no effect on the propagation of the TE;-
mode, because the currents that flow on the two sides of the wall are equal
and opposite.

The TEsrmode in rectangular guide can, in turn, be converted into
the TE,-mode in round guide by the transducer sketched in Fig. 10-7.
Successive sections through the transition section are shown, and the
field configuration is indicated.

10-2. General Properties of Mode Transducers.—The general state-
ments that can be made about mode transducers are few and follow
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immediately from the observation that a waveguide in which n» modes
can propagate is equivalent to n guides, in each of which only one prop-
agating mode can exist. Thus, the properties of a junction of m guides
supporting ni, 1z, . . . n, modes, respectively, can be described by an
N-by-N impedance matrix, N being the total number of propagating

modes, or N = z ni.  The basis for this assertion is the orthogonality
E=1

of the waveguide modes, which ensures the absence of cross terms involv-

ing the fields of two or more modes from the expression for the power flow

normal to a boundary surface drawn across a guide.

To such a junction, then, all of the general theorems of Chap. 5 may
be applied. The symmetry of the impedance matrix is again an expres-
sion of the reciprocity theorem or, in this case, of the reversibility of the
mode transformation. To be sure, this result is fairly obvious, and it
was not stressed in the preceding section in which each transducer was
described arbitrarily in terms of a wave incident from one side only.

The transducer of Fig. 10-4 can be described by a 3-by-3 matrix,

Zn Zw Zu
Z = Z12 Z22 Z23 s
Z13 Z23 Z33

in which the subscript 1 is identified with the TE,-mode in the narrow
guide and the subscripts 2 and 3 with the TEx- and TE,-modes, respec-
tively, in the wide guide. If the junction is lossless, an allowable assump-
tion for junctions of this type, the elements of Z are all imaginary. An
ideal transducer of this sort would be characterized by

Z23 = Z13 = 0, (1)
and Zyn— Zy =0, @)
Z?z - Z11Z22 - 1 = 0

Equation (1) expresses the fact that the TE,-wave in the wide guide ix
not excited by the other waves. ¥quations (2) state the condition for a
matched transition between terminals (1) and (3). Since the 3-by-3
impedance matrix for the lossless case originally contained six unknown
quantities, the application of Eqs. (1) and (2) leaves only two quantities
to be specified. One of these can be identified at once as Z;3; the remain-
ing quantity is to be associated with the equivalent length of line between
terminals (1) and (2). The result that has been obtained is perhaps so
obvious as to command little respect. It amounts to the statement that
an ideal mode transducer is equivalent to a lossless matched two-terminal-
pair network and hence to some length of uniform line.

The third terminal pair is completely disconnected from the remainder
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of the system, by virtue of Egs. (1). A wave incident from (3) will be
totally reflected as if, for this mode, there existed a short circuit some-
where within the transducer. The apparent position of the short, circuit
is specified by Zs;.

In practice mode transducers are not quite perfect, either because
they are not perfectly matched or because an appreciable amount of
energy is transferred to the unwanted mode or for both reasons. A
slight mismatch is usually tolerable and in any case presents no new
problem. Excitation of one or more unwanted modes, on the other hand,
often proves very troublesome. It is in the examination of this problem
that the description of a transducer as an n-terminal-pair device is most
helpful.

If a transducer is considered such as the one in Fig. 10-4, it is seen to
involve only one unwanted mode and can be regarded as a three-terminal-
pair device. The general three-arm lossless junction has the property
(Chap. 9) that a short circuit suitably located in one arm, say (3), entirely
decouples the other two arms from each other. Hence, no matter how
weak the excitation of the unwanted mode, if it happens that the energy
transferred to that mode is sub-
3 31 sequently reflected back, without

i loss, to the junetion and in pre-
1977 3 > —o, cisely the most unfavorable phase,
[—©  there will be no transfer of energy
F1e. 10-8.—Interconnection of two three- between guides (1) and (2) in the
terminal-pair networks. steady state. A wave incident
upon the junction from guide (1) or from guide (2) will be totally
reflected. A situation like this can arise when two mode transducers
are connected together by joining the multimode pipe of one to the
corresponding pipe of the other. This is equivalent to connecting
two three-terminal-pair networks as in Fig. 10-8. The behavior of the
combined network may be expected to depend critically on the length of
the connecting pipe.

Little can be said, in general, about junctions involving more than
three modes. In special cases symmetry conditions may simplify the
solution. An example is provided by the junction shown in Fig. 10-4a
which, if the plunger is removed, becomes a four-terminal-pair device.
It is a very special four-terminal-pair device, however, for inspection
discloses that in so far as the four propagating modes are involved, it has
precisely the symmetry of the magic-T four-junction. The TE:-mode
in arm (2) plays the role of the series branch of the magic T. Thus
any result derived for the latter junction applies at once to Fig. 10-a.
It is interesting, although perhaps disappointing, to note that there is not
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obtained thereby a theoretical prediction that the plunger in Fig. 10-4
can be adjusted to eliminate excitation of the TE,r-mode in the wide
guide. That is to say, the magic-T four-junction does not belong to the
class of four-junctions that are equivalent to two cascaded three-junctions
(see Chap. 9).

If a mode transducer cannot be assumed to be lossless, the only general
statement that can be made about it is the statement of the reciprocity
theorem.

10-3. The Problem of Measurement.—When two or more modes are
excited in the same waveguide, it is not easy to determine by measure-
ment the amplitude and phase of each. The difficulties are mainly
practical ones, which would not arise if the experimenter had at his dis-
posal infinitesimal probes that could be moved about within the guide
at will without disturbing the existing fields.

Only in exceptional cases is the usual slotted-line technique applicable,
for it is usually impossible to cut in a guide a slot that will be everywhere
parallel to the lines of current flow in each of the two modes and will
therefore seriously disturb the field of neither. One such exception is
found in the case of a guide of circular cross section carrying the TE, -
and TM y;-modes, neither of which is modified by the presence of a narrow
longitudinal slot. A probe in the form of a small antenna can be moved
along such a slot, as in the usual standing-wave experiment, and a quan-
tity can be measured that is some function of a linear combination of the
amplitudes of the four traveling waves, two of which are associated with
each mode. The interpretation of the ‘‘standing-wave’’ pattern so
obtained is a more complicated affair than in the case of a single mode.
For example, if the guide is matched for both modes so that there are two
waves only, running in the same direction, the power picked up by the
probe will nevertheless go through maxima and minima as the probe is
moved along the guide. The reason for this is the difference between the
guide wavelengths A;; and A, of the two waves. Suppose that I, the
rectified probe current, is proportional to the square of the electric field
amplitude at the probe and that x measures the position of the probe
along the guide. Then,

11’ = ;ei(:u/xw + be;aclwn/x,g)‘z’ (3)
where be’® accounts for the relative amplitude of the second wave and its

phase relative to the first wave at £ = 0. The distance between succes-
sive positions of maximum I, is

BRI
()‘1/1 - )‘02),
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and the apparent ‘“standing-wave ratio”” is

Ipmae _ (1 + 0)?

Ip in (1 — b)2 (4)

An analysis of the fields within such a guide, even when several waves
are present, can be made on the basis of a number of probe readings taken
at points distributed along the guide. In principle, six probe readings
should suffice to determine the six quantities of interest: the relative
amplitudes of the four traveling waves (three numbers) and their relative
phases at some reference point
(three numbers). This, of course,
assumes that the guide wave-
length for each mode is previously
known as well as the relative
degree of coupling to the probe,
that is, the field at the probe in
each mode when equal power is
flowing in the two modes. If slots
are ruled out, as they often are,
fixed probes may be used. These
may take the form of small holes
in the guide walls coupling to
external guides to which a detec-
tor can be connected. In any
case, the deduction of the desired
\ quantities from several probe
Fie. 10-9.—Probes for detecting the TMn- readings is a process discourag-

mode. ingly tedious and probably inac-
curate unless the circumstances permit simplifying approximations.

A difficulty that may arise from the use of a probe is the coupling
between the two modes caused by the probe itself. This is especially
troublesome when one of the modes present has a low intensity. The
difficulty can be avoided, at some cost in complexity, by a scheme that
also furnishes a method for measuring the amplitude of one mode alone
in the presence of the other. Let the circular guide supporting the
TE- and TMy-modes be provided with two diametrically opposite
longitudinal slots and a traveling probe for each slot, as shown in Fig.
10-9. If the transmission lines coming from the probes are joined
together externally at a point equidistant from the two probes, the volt-
age at this junction point will be a measure of the amplitude of the
TMy-mode only. Of course, this is merely an application of the multi-
antenna mode transducer described at the beginning of Sec. 10-1. The
principle can obviously be extended to any mode configuration if the
complexity of the resulting apparatus can be tolerated.
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When there are more than two allowed modes, the difficulty of
quantitative determination of the fields within the guide becomes indeed
formidable. In many cases, however, it is possible to ascertain the prop-
erties of the mode-transducing junction through measurements made in
the single-mode guide that usually forms one arm of the transducer.
Consider such a transducer, exemplified by the devices shown in Figs.
10-1 and 10-5, which serves to eouple a guide carrying only one mode to
another guide in which more than one mode can propagate. For brevity,
the single-mode guide will be referred to as A and the multimode guide
as B. It is assumed further, for simplicity, that only two modes are
excited; the desired mode (2) is strongly excited, whereas the mode (3)
is excited only weakly. The following remarks thus apply to the TE 1,
to TMy-mode transducer of Fig. 10-5 if the junction is free from irregu-
larities that would introduce asymmetry and result in the excitation of the
TE,-mode as an elliptically polarized wave in pipe B, which is in this
case the circular guide. Let us see how the electrical properties of the
junction can be determined from standing-wave measurements made in
guide A only. While the procedure to be described is a practical one, it is
discussed here chiefly as an application of the ideas of the preceding
section.

It should be noted at the outset that one operation which can be
performed on the waves in pipe B in a nearly ideal manner is that of
reflecting them from a short-circuiting plunger, which fits snugly inta
pipe B and the face of which is a flat metal surface normal to the axis of B.
Such a plunger introduces no coupling between modes. Moreover,
because the phase velocities of the two modes in B are different, motion of
the plunger varies the terminations of the two modes at different rates.

It was shown in the preceding chapter that an equivalent circuit of
the form shown in Fig. 10-10 can be drawn for a lossless three-terminal-
pair network, and this representation is convenient for the present pur-
pose. Three of the parameters in this general description are the line
lengths I, 5, and l;, which are of no immediate concern. The other
parameters are the turn ratios ni, and n,; of the two ideal transformers,
and the convention is adopted that n;s < 1 for a voltage stepup from line
(1) to line (3), which is the situation suggested'in Fig. 10-10. The ideal
transducer is then characterized by ni2 = 1, n1; = 0. The case of inter-
est, however, isnie = 1, 0 < ny13 K 1.

The plunger in pipe B now serves to connect to lines (2) and (3)
impedances Z, and Z; which, but for losses in pipe B, would be pure
reactances jX; and jX.. Any combination of X; and X, can be realized
if pipe B is long enough and if the guide wavelengths of the modes in B
are incommensurate. Measurements of the impedance of the junction,
as seen from pipe 4, for a sufficient number of plunger positions provides,
in principle, information from which the parameters of the equivalent
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circuit can be determined. If n,3 << 1, as assumed, it is well to examine
the situation more closely. In particular, suppose that the most sig-
nificant piece of information required is the value of n;, which is a meas-
ure of the degree of coupling to the unwanted or parasitic mode. The
effect of n.; will be most pronounced at plunger positions for which the
line (3) is terminated in a very high impedance. In fact, if there were no
loss in line (3), total reflection of power incident from A would result
when the distance of the plunger from the transformer, which, of course,
includes the distance Is, was (2n + 1) \,,/4, n being an integer and A,,
denoting the guide wavelength for the mode in question. Actually,
because of attenuation in B, Z; will not become infinite but will be very
1arge when the plunger is near the position just specified.

Fi6. 10-10.—Equivalent circuit of a lossless three-terminal-pair network.

The behavior of Z; and the resulting variation of the impedance Z,
observed at the terminals (1) can be analyzed by applying the trans-
mission-line formulas. Suppose that the total distance L between the
transformer n.; and the plunger is close to m)\,,/4 (m = 1,3, - - *) so
that kL = 2xL/N\, = mx/2 + 6, where § << 1. Let the attenuation con-
stant for this mode in B be denoted by « (as in Sec. 2:16, for example).
If ah «1, as is usually true, an approximate formula for Z; is easily
derived

mh,a
4

Z, NETT
mi,a )
(") +

The impedance connected to line (2) can be treated as a reactance

X2, even though the attenuation constant of mode (2) is comparable to

that of mode (3) if plunger positions in the neighborhood of L, = m)\,,/4

are excluded. The impedance seen looking to the right, at T, can then
be written

(5)
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m\,,a

— j6
ZT = "’%3 —-:}* -

WAL
(") o

A measurement of the standing-wave ratio in A, as a function of
plunger position, will disclose sharp minima, and it is in these regions
that Eq. (6) applies. If the variation of X, through such a narrow region
is neglected, the impedance Zr will traverse a curve in the RX-plane
similar to that drawn as Curve I in Fig. 10-11a, as the plunger is moved
through a region m = m,.

For m,, some other value of m, the impedance Z, will trace out Curve
II, which is similar to Curve 1 but displaced by a different value of X,.
Now if m; and m, are both fairly large, and if |m; — mo &« m,, the
maximum resistance observed at T will be approximately the same.
Curves I and IT, if transformed to

+ jX,. (6)

the Smith chart of Fig. 1011, L

will then come close to the same ™M ka0 '
resistance circle, provided the ref- —@—T |

erence plane T has been properly I x, .
selected. Since the position of T -

(governed by the length [,) is not ) R }
known in advance, the procedure \——/n

is to plot the observed standing-

wave ratio and the corresponding

plunger position, measured in (@) G

units of A2, on the Smith chart. ¢ lo'llgrl}?;ggdjfn f;(,ls;"nc’e’; the neigh-
The whole diagram can then be

rotated until the circles so obtained touch the same resistance circle.
Thus, with some approximations, the position of T has been found, and
if ais known 7,3 can be immediately computed.

The degree of coupling between mode (3) and the rest of the system
can be estimated in another way if it can be arranged to excite in guide B
this mode only. Such a wave, incident on a perfect transducer, will be
totally reflected, as has already been noted in See. 10-2. If n;; > 0,
however, there will be transferred to the other modes a small fraction of
the incident power, a measurement of which will at once determine n1s.

10-4. Mode Filters and Mode Absorbers.—The example just dis-
cussed in Sec. 10-3 could have been analyzed much more easily had it
been possible to assume that guide B was terminated in a matched load
for mode (2) at the same time that mode (3) was totally reflected. The
term jX. in Eq. (6) could then be omitted. In other words, a terminat-
ing element capable of reflecting one mode totally while absorbing another




348 MODE TRANSFORMATIONS [Sec. 104

or transmitting it without reflection would be useful. In any given case,
the electromagnetic field configuration of the modes in question will
suggest at once means by which, at least in principle, this can be achieved.
Figure 10-12a and b shows two such selective devices. Each consists of a
screen of conducting wires (supported, if necessary, by a thin dielectric
sheet). The wires are, respectively, perpendicular to the electric fields
of the TMo-mode (a) and the TE,-mode (b). Hence the screen a
will transmit TM,;-waves without reflection but will reflect, at least
partially, TE,-waves and others such as those of the TM;;-mode.
Conversely, the screen b transmits TE,,-waves.

Modes that are reflected by such a screen, or mode filter, will not, in
general, be fotally reflected. The reflection coefficient will depend on the
diameter and the number of the wires. In fact, such a screen can be
regarded simply as a shunt susceptance, similar to a metal post in a

Wires

(a) (b)

Fig. 10-12.—Wire screens for selective transmission of (@) TMoi*mode and (b) TEon-mode.

rectangular guide. As a practical matter, it is difficult to achieve a very
large reflection coefficient for one mode without causing appreciable
reflection of the mode to which the screen is intended to be transparent,
since complete transparency presupposes wires of infinitesimal diameter.

In certain special cases, one of which is represented by Fig. 10-12b,
conducting sheets parallel to the guide axis may be employed. If each
wire of the screen of Fig. 10-12b is translated along the guide, it generates
a septum, and through these septa the TEq-waves will pass undisturbed.
Such a scheme is obviously limited to TE-modes, since the equivalent of a
“magnetic wall”’ does not exist.

An important variant of Fig. 10-12a makes use of a single resonant
ring, instead of the concentric rings of wires, to reflect TE,;-waves. Such
a closed resonant ring would not totally reflect TEy-waves.

The application of waveguide-circuit analysis to mode filters them-
selves is straightforward and not particularly interesting. If the filter
in question does not couple one mode to another, it is necessary to insert
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in each of the equivalent single-mode transmission lines the appropriate
impedance element.

If the wires shown in Fig. 10-12 are not perfectly conducting, the
resulting device is a selective mode absorber. It is not easy in practice
to construct a mode absorber that presents a matched load to one mode
and that transmits another freely. This is not always necessary, how-
ever. Often it is required merely that sufficient selective attenuation be
introduced in a multimode guide that connects two mode transducers to
avoid difficulty arising from a resonance. This problem was suggested
in the preceding section, the results of which are immediately applicable.

Let us suppose that the transducer to which Fig. 10-10 applies is
provided with a matched termination for mode (2). This might, in
practice, take the.form of a similar transducer connected to transfer back
to the single-mode guide. If the term jX. in Eq. (6) is replaced by
unity, it is noted that the maximum reflection of a wave incident from
pipe A will occur when § = 0, and the standing-wave ratio ps in A can
then be written, if p is not large, as

2
4nl, .

pa— b~ mAg,a @™

— mAoax

Nowe * isthe attenuation of the amplitude of a wave running one way
between the junction and the plunger in line (3). This might be written
more generally as ¢, including the effect of any mode absorber intro-
duced into pipe B. Then

1w (e)?
v

pa (8)
It should be noted that the quantity (n:5)?% which has been used to specify
the coupling of the unwanted mode, is approximately [(n:3)? << 1] the
ratio of the power transferred into mode (3) to that transferred into mode
(2) when both are terminated without reflection. If it is required for a
given application that pa — 1 shall not exceed a specified number, regard-
less of the distance between the junction and the reflecting termination
of the parasitic mode (3), Eq. (8) prescribes the amount of attenuation
that must be provided in pipe B by a selective mode absorber.

10-6. The TE,;-mode in Round Guide.—The TE;-mode in wave-
guide of circular cross section, which was mentioned at the beginning of
this chapter, deserves special attention. Propagation can occur in two
modes simultaneously in such a guide, but there is an essential arbitrari-
ness In the description because the two modes have identical cutoff
frequencies and because there is no unique direction to fix the
coordinate system in which the field configuration is to be described.




350 MODE TRANSFORMATIONS [Sec. 10-5

First, two mutually perpendicular planes through the axis of the guide
may be selected, and modes (1) and (2) may be defined as the two TE ;-
modes with electric fields parallel and perpendicular respectively to
each of these planes. Any wave in this pipe, for example a wave polar-
ized in a plane making some angle with the two chosen planes, can be
represented as the sum of waves associated with modes (1) and (2).
The wave, in other words, can be resolved into what will be called two
basic polarizations. The basic polar-
izations need not be perpendicular
to each other, but this choice is
usually convenient; and if it is made,
the modes (1) and (2) will be said to
be orthogonal.

Figure 10-13 shows how a plane-
polarized wave at some arbitrary
Fia. 10-13.—Resolution of a plane- polarization angle may be resolved

polarized wave into two basic waves. into two basic polarizations. It is
clear that there is nothing fundamental about the particular directions
chosen for the basic polarizations. If these basic polarizations are rotated
to a new position, an alternative representation is obtained for the plane
wave.

In a similar way two plane waves may be superposed to make a circu-
larly polarized wave as shown in Fig. 10-14. Thus, a circularly polarized
wave may be said to be resolvable into these two basic polarizations.
Basic waves need not be taken as
plane polarized. For instance,
it is well known that two circu-
larly polarized waves can be com-
bined to form a plane-polarized
wave. Thus the two circular

polarizations form a possible set
of basic waves. Fia. 10-14.—Resolution of a circularly
polarized wave into two plane polarized
waves.

For the analysis of circuits
and circuit elements employing
the TE;-modes, a description by means of scattering matrices, which
were introduced in Sec. 5-13, is helpful. ~As before, a waveguide carrying
two modes is to be regarded as equivalent to two transmission lines, and
the terminal of such a guide is represented by two terminal pairs, each pair
being associated with one of the basic polarizations. The new element
in the situation arises from the possibility of shifting, at will, from one
set of basic polarizations to another. Such a change in representation
involves a transformation of the scattering matrix that ‘“mixes’ the
original terminal pairs, so to speak. Although this is a procedure that
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can be carried out formally for any guide carrying two modes, it usually
lacks the useful physical interpretation that can be given in this special
case.

10-6. Permissible Transformations of a Scattering Matrix.—Con-
sider the system shown in Fig.
10-15.  The two planes of polar-
ization are designated by the num-
bers (1) and (2). The remainder
of the terminals are located in rec-
tangular waveguides and are des-
ignated by the numbers (3) and

Fie. 10-15—Waveguide junction with
A h four terminals. Two terminals are in rec-
(4). As was shown in Chap. 5, if tangular guide; the other two terminals

are two basic polarizations in the round

the incident waves are represented waveguide.

by the column vector

ay

22

a = «
o v)
\24

and the scattered waves by

b

_ o
b = ba H (10)

bs

then
Sa = b, (1)

where the matrix S is symmetrical and unitary. It is implicitly assumed
that the polarizations (1) and (2) are normal to each other.

It is evident that the planes of

—————————————— AN polarization chosen in Fig. 10-15 are

'\, notunique and a rotation of (1) and

-7, ' (2) to a new position should be per-

missible. A rotation can be charac-

terized by a linear transformation of

the wave amplitudes. A rotation of

the basic polarizations by an angle

@, 6 changes the wave amplitudes a,

Fig. 10-16.—Transformation of basic  gnd g, in Fig. 10:16, into the cor-

polarizations by a rotation. . N "
responding primed quantities; thus

a,

|
|
1
.- - 1
() - 1
1
1
1
J

a, = a) cos § — aj sin 8,

e / (12)
a: = a; sin 6 + a, cos 6.
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Equations (12) may be written, using the matrix notation, as

a=Ta, (13)
where
cos 0 — sin §
b0
sin 6 cos 8§ |
T = | Lo . (14)
i1 0
0 ':
10 1
In a completely analogous way,
b = Tb’; (15)
and if these are substituted in Eq. (11),
b’ = T-18Ta’. (16)
The matrix
§’ =T8T 17)

is the scattering matrix for the new terminals. It may be seen by
inspection of Eq. (14) that

T =T, (18)

and thus T is orthogonal. It was found in Sec. 5:12 that a sufficient
condition that Eq. (16) provide a permissible transformation is that the
matrix T be real and orthogonal. A permissible transformation is one
that leads to a symmetrical and unitary scattering matrix.

Many transformations T that are real and satisfy Eq. (18) and are
therefore permissible are not particularly useful, for, in general, these
transformations mix all the components of a with one another. If the
transformation is restricted to a mixing of the terminals (1) and (2), it is
found that the resulting transformation is either the rotation described
by Eq. (14) or a reflection in some plane containing the axis of the guide.
There are cases in which the more general transformation (having no
simple geometrical significance) is useful, but they will not be considered
here.

In addition to the rotation or reflection of the reference polarizations,
there is another important type of transformation. This is a transforma-
tion which is equivalent to choosing the reference plane of each of the
terminals in a new place. It is effected by the diagonal matrix P dis-
cussed in Sec. 5:16. If the kth terminal reference plane is shifted out a
distance di, then
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e 0 0 0
p_ 0 e» 0 0
0 0 g% 0
0 0 0 o

) (19)

where ¢, = 2r(di/A). It should be noted that P* = P~!, The matrix
S’ obtained by the transformation

$ = PSP (20)

is both symmetrical and unitary.

If transformations of the type given by Egs. (17) and (19) are induced
successively, it can be shown that any such sequence is equivalent to a
single transformation 8’ = 0OSU, where U is a unitary matrix.

Consider the following example. Let

ue | | 1)

The matrix U may be represented as the product
U = PT,
where T is a rotation {see Eq. (14)] of 45° and

1 0;

p=). _______ . (22)

0 1
It may easily be seen that transformation by U changes the reference

polarizations into circular polarizations. To see this, note that a particu-
lar case of a = Ua’ is

1 1

1 i 0
valo| =Y o/ (@3)

0 0

The left-hand side of Eq. (23) represents a circularly polarized wave.
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The matrix given by Eq. (21) is a special case of a transformation that,
in the more general case, changes the basic polarizations from plane to
elliptical polarizations.

10-7. Quarter-wave Pipe.—Perhaps the simplest device that dis-
plays the characteristic features of TEy;-mode propagation is the quarter-
wave pipe. 1t is a length of guide having a circular cross section at either
end but departing from circular symmetry in the intermediate section,
where it is symmetrical about a plane only. The departure from circular
symmetry in this region is just great enough to introduce a net difference
of /2 in the electrical length of the pipe with respect to basic polariza-
tions chosen respectively parallel to and perpendicular to the symmetry

[-O 043 rO 021

[ VA4
N N
S —pye —T.lms'_r

| o oo

y

v 2 2.
0.215’1-—1.250”——10.215’

¥Fr1:. 10-17.—Quarter-wave pipes. The steps at each end of the fin are quarter-wavelength
transformers for matching; the dimensions given are for A = 1.25 cm.

plane. In other words, if two waves polarized in these directions are
passed through the pipe, a quarter-wave retardation of one with respect
to the other results. This device is the exact analogue of the optical
quarter-wave plate made of a doubly refracting crystal, and it is employed
in the same manner, that is, to convert a linearly polarized wave into a
circularly polarized wave and vice versa.

The requisite retardation can be effected in many ways, with negligible
reflection of the incident wave. It suffices, for example, to make the
guide slightly elliptical in cross section for some distance, or a dielectric
slab may be introduced or a metal fin, as in Fig. 10-17. In any case, if
reflections can be neglected, the scattering matrix for the quarter-wave
pipe can be written

00 1 0
1o 0 o

s=el o0 b (24)
0 j 00
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An incident linearly polarized wave

O =

0

emerges as a circularly polarized wave

0

¢is]01.

J

The angle ¢ is simply a measure of the electrical length of the pipe for a
wave polarized along (1). If S and Sy, in Eq. (24) are replaced by —1,
the scattering matrix is obtained for a half-wave pipe, a device that can
be used, for example, to convert a right-hand circularly polarized wave
into a left-hand circularly polarized wave.

10-8. Rotary Phase Shifter.—The rotary phase shifter' may be cited
to illustrate the use of the transformation discussed in the previous section
to facilitate analysis. Figure
10-18 is an exploded view of such
a phase shifter. It consists of two
sections of round guide separated
by a sandwich of a half-wave pipe
between two quarter-wave pipes.
The heavy arrows on these sections
indicate the planes of polarization
that are retarded by the pipes. 4 Half-wave plate
The half-wave pipe is mounted in F1a. 10-18.—Rotary phase shifter.
such a way as to be rotatable. If the incident plane wave has a plane
of polarization (1) or (2), it will be shown that the device acts as a phase
shifter as the angle 6 is changed.

Consider first the section marked A in Fig. 10-18. This is just a
section of uniform waveguide with arrows indicating the directions of
polarization for the four terminal pairs. It is easily seen that the scat-
tering matrix for this section is

Quarter-wave plates 3

0 0 1 1

. 1 0 0i—1 1
i= e | S , (25)

vVZ o1 -1 0 o0

1 i, 0 0

! A. G. Fox, “Waveguide Filters and Transformers,” BTL Memorandum MM-41
160-25.
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where ¢, is a phase angle depending on the length of the guide. After
passing through the quarter-wave pipe, the scattering matrix becomes

0 0f 1 —j

. 1 0 0i—1 —j
g = ——e® | R R . (26)

V2 1 -1 0 0

) 0

The axis of the half-wave pipe is at an angle 6 with respect to the direction
(4). Therefore, the problem is simplified if the matrix of Eq. (26) is-
transformed by a rotation through an angle 8 by the matrix

1 0!
‘ 0
0 1
T=| | @)
icos 6 — sin 6
0
sin 8 cos 6
Then
e —jet
0
8 = TS,T = L oo e e
T TR A L )
; 0
—je?  — jem:

Now passage through the half-wave pipe has the effect of changing
the sign of the fourth row and column. Therefore,

LT [SR— et : (29)

A rotation by — 8 is now indicated, in order that the scattering matrix of
the quarter-wave pipe should be simple. This rotation is effected by

T = T(—6) = T(). Thus,
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Vo p—28  5,—26
56 7 Je d

S4 = T’SaT, = ‘\j_z_ %8 | s e CRREEEE - (30)

e e |

Passage through the final quarter-wave pipe changes Eq. (30) to

20 e—"zja
0
1 —_ 62]'0 eZ]O
Sy = —z @ | oo . (31)
2 —2i0  __ 526 |
e e¥’
Lo
%0 ot !

A rotation by 45° brings the basic polarization planes into coincidence
with (1) and (2) and is accomplished by setting Ss = T”/ST”, in which
T is given by Eq. (27) with § = 45°. When this transformation is
carried out and the terminals subsequently moved to the end of the guide,
the final result is

et 0

S [t R : (32)

1
a= g ’ (33)
0
the scattered wave is
0
b = ¢ité—20 (1) . (34)
0

The outgoing wave contains 6 as a phase angle. Thus, as 8 is increased,
the equivalent line length between input and output terminals isincreased.
For an incident wave
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0}
|

a= || (35)
0
the scattered wave is
0
b = eitert20 ?) , (36)
1

and the line length is decreased as 6 is increased.

10-9. A Rectangular-to-round Transducer.—Figure 10-19 shows a
rectangular-to-round mode trans-
ducer. The junction between the
two guides may be symmetrical as
shown (i.e., have one or more sym-
metry planes), or it may be com-
pletely unsymmetrical. The ter-
minals (2) and (3) may be plane
polarizations located symmetrically
T with respect to a symmetry plane
) as shown, or they may be elliptical
Fic. 10-19.—Rectangular-to-round mode polarizations in any position.

transducer. . . .
1t 1s evident that since the junc-
tion has three terminal pairs and negligible loss, all the results obtained
for lossless T-junctions of various kinds are also applicable here. These
results are mainly the following:

3) (2)

A. Tt is impossible to make a T-junction that is completely matched.

B. If a T-junction is matched at two terminal pairs, the third terminal
pair is completely decoupled from the other two.

C. A plunger in any arm of a T-junction can be so placed as to
decouple the remaining two arms.

D. If the T-junction is symmetrical, a plunger in the arm containing
the symmetry plane can be so placed that the remaining two
junctions are matched.

Each of these results is applicable to Fig. 10-19.  For instance, assume
that the E-plane of the figure is a symmetry plane of the junction.
Assume that the terminals (2) and (3) are elliptical polarizations whose
major axes make angles of 45° with respect to the symmetry plane. The
plane polarization indicated in the figure is clearly a limiting case. Two
cireular polarizations form the other limiting case. From the result (1)
it is elear that there is a nosition of a plunger in the rectangular guide such
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that the terminals (2) and (3) are matched. For example, there is a
position of the plunger such that a linearly polarized wave, polarized as
(2) in the figure, is reflected back, polarized as (3).

The statements (A), (B), and (C) apply regardless of the symmetry
of the junction or orientation of the polarization. The interpretation
of the statement (A) is obvious. Theorem B states that if terminal
(1) is matched and (2) is the polarization excited in the round guide
by a wave incident in (1), then the polarization (3) orthogonal to (2)
is completely decoupled from (1) and (2). Alternatively, if a polariza-
tion (2) is completely reflected polarized as (3), then (1) does not couple
with the round guide.

The theorem (C) has an interesting application to the junction of
Fig. 10-19. If a plunger is inserted in (1), then for any polarization (2)
there is a position of the plunger such that this polarization is reflected
back unchanged. Also, for this same position the orthogonal polariza-
tion (3) is unchanged by reflection.

10-10. Discontinuity in Round Guide.—A round guide with a dis-
continuity in the middle is an
example of a four-terminal-pair @
network. As such, it satisfies the ‘ @)
conditions applicable to direc-
tional couplers. One of the most

interesting of these is the follow- o)
ing: Any four-terminal-pair june-

tion that is completely matched!

is a directional coupler. To state ‘
it in other words, if a junction

of four waveguides is matched at @

each waveguide, then for any Irc. 10-20.—Discontinuity in round wave-
guide there is one other guide to guide.

which it does not couple (see Chap. 9).

This theorem may be taken over completely in the case of the round-
guide junction. If, for a given set of basic polarizations, the junction is
matched, then it has the properties of a directional coupler. Referring
to Fig. 10-20 this implies that the polarization (1) (shown as a plane
polarization, whereas it may be elliptical or circular) does not couple to
one of the polarizations (2), (3), or (4).

The case of no eoupling between guides (1) and (2) is rather trivial.
In this case no power is reflected in éither (1) or (2) for incident power in
(2) or (1). This is also true for any linear combination of (1) and (2).

1 As usual the term “matched’’ is intended to mean that if all terminal pairs but
one are provided with reflectionless terminations, a wave incident at the one terminal
pair is not reflected.
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For any polarization incident on one side, the power is transmitted
wholly through to the other side.

If (1) and (2) couple, then there is zero coupling between (1) and (3)
and between (2) and (4). Thus, all los less matched junctions of two
round guides may be divided into two classes:

1. Those in which power entering one guide in any polarization is
wholly transmitted out the other guide.

2. Those in which each of the basic polarizations of one guide couples
with one and only one basic polarization of the other guide.

10-11. Principal Axes in Round Guide.—In Fig. 10-21 is shown a

round guide having a lossless termination. Plane polarizations (1)

and (2) are chosen as basic polar-

izations for the device. Since the

directions of (1) and (2) were chosen

at random, the resulting scattering

matrix is complicated. It will now

be shown that it is possible to

choose directions for the polariza-

1 tions (1) and (2) such that these

polarizations are not changed by
the reflection at the termination.

Let S be the scattering matrix

(a 2-by-2 matrix, of course) of the

I'16. 10-21.—Round waveguide withlossless  jynetion referred to the original ter-
termination. . .

minals. Now assume that there is

some incident wave a which is reflected back unchanged, except perhaps.

for a change in phase. Assume, in other words, that

Sa = sa, 37)
where s = &/,
In order for Eq. (37) to be satisfied by a nonvanishing a, the determinant

S — 8 Sie
Szl Szz — §

This leads to a quadratic equation in s (called the characteristic equation
of S), the two roots of which are, in general, unequal. The roots will be
of the form ¢* because the box is lossless.

Provided s has one of the roots of Eq. (38) as its value, there will be
nontrivial solutions of Bq. (37). As yet, however, there is no guarantee
that the resulting solutions for a do not represent elliptical polarizations.
It will now be shown that the a’s do indeed represent linearly polarized
waves.

If Eq. (37) is multiplied by s*S*, and if it is remembered that

= 0. (38)
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S* = §-1,
then
S*a = s*a. (39)
If the complex conjugate of Eq. (39) is added to Eq. (37), the result is
S(a + a*) = s(a + a*). (40)

But a 4+ a* represents a pure real column vector, or a linearly polarized
wave. Hence, linearly polarized waves can be found that satisfy Eq.
(37). These particular planes of polarization afford convenient basic
polarizations because the resulting scattering matrix has only diagonal
elements.

If the termination of the waveguide is lossy, the scattering matrix is
no longer unitary and Eq. (40) is no longer valid. It is still possible to
obtain solutions of Eq. (37), but these solutions, in general, represent
elliptically polarized waves.

10-12. Resonance in a Closed Circular Guide.—The problem to be
discussed in this section derives its importance from the use of waveguide
rotary joints employing the TMy;-mode. It has already been pointed
out in Sec. 10-3 that even very weak excitation of one of the TE;-modes
by a transducer such as that shown in Fig. 10-5 may have a pronounced
effect on the behavior of a rotary
joint made from two such trans
ducers connected in cascade in the
event of a TEi;-resonance in the
pipe connecting the two. To find
the conditions under which such a
resonance can occur, it is neces-
sary to take into account the fact
that a TE.;-wave incident on one
of the transducers is reflected with
a phase that depends, in general,
on the polarization of the wave. &

That is to say, the transducer, as Fia. ]0-22.~R0und:;z:i\:guide closed at both
regards TE.-waves, acts very

much like the junction of Fig. 10-21. There is, of course, some ‘“loss”’
representing the leakage of power through the transducer into the rectan-
gular guide, but this can be disregarded in the search for the resonance
condition, as can the presence of the T'My;-wave in the pipe. The prob-
lem can thus be reduced to that of the section of round guide closed at
both ends, which is shown in Fig. 10-22.

The waveguide is cut in the middle to allow the two sections to be
rotated with respect to each other. The two halves of the guide are
identical. Their terminations are totdlly reflecting and are identical
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also, although of some irregular shape. The principal axes of the ends
are indicated by the directions a and b. The median plane is taken as a
common terminal plane for the two halves of the system, and the polariza-
tions (1) and (2) are common to the two halves of the system. The
problem is to find the conditions for which, at a fixed frequency, a wave
can exist in this closed lossless system. This problem was first treated
by H. K. Farr.!

The two ends are designated by the numbers 1 and 2. If the scatter-
ing matrices for the two ends are 8; and Ss, then

Sia; = by,
Sgag = b-_). : (—11)

Since the incident wave for one end is the scattered wave coming from
the other end, it is clear that

a; = bg, y
d, = bl. (42)
From Egs. (41) and (42),
$:8:a; = Siby = Sja; = by = a.. (43)

From this result it may be inferred, as in the preceding section, that if
solutions are to exist with a, # 0, we must have

Now 8, and S; are not unrelated, for the two ends are the same, except
for rotation of one with respect to the other. It is convenient to take as
reference the situation in which the ends are oriented so that their
principal axes are parallel and coincide with the basic polarizations (1)
and (2) of Fig. 10-22. In this case § = 0,

. e 0
8 =8, = {0 em]. (45)
If now the two halves of the guide are rotated by 8 and — 6, respectively,
we have

S; = 5(9)

and

S2 = S(—G)r

where S(6) is the matrix of ¥q. (45) transformed by a rotation of T(#6),
according to Eq. (14). Thus S; becomes

S, — cos? fertt + sin? feitr  cos 0 sin 8(ef*r — %) 46)

! cos §sin B(e/® — e/*)  cos? fef® 4 sin® feit ’

1 H. K. Farr, “A Theory of Resonance in Rotary Joints of the Mo, T'vpe,” RL
Report No. 993, January 1946.
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and S, is the same except for a change in sign of the off-diagonal elements.
It is merely a matter of straightforward algebra to substitute these
matrices in Eq. (44) and thus obtain a relation connecting 8, ¢,, and ¢..
[f, instead of ¢, and ¢, the angles € and & are introduced, these angles
being defined by

€= o1+ o2, 5= 1 — ¢, (47)

the result assumes a particularly compact form

sin? 2 = Gose (48)
The angles 6 and ¢ have a simple interpretation. If the termination is
represented by two selective reflectors or short circuits, one acting on a
wave polarized along one of the principal axes and the other effective for

F16. 10-23.—The quantities I, and I, in resonant round waveguide.

a wave polarized along the other principal axis, then ex,/47 is the sum of
the distances from the midplane to each of the two reflectors and o, /4r

is the distance between the two reflectors. For the structure shown in
Fig. 10-23,

€ = )T] ( + 12)
and
2
6= Xf (= 1),

assuming that the edge of the fin acts as a short circuit at that point for a
wave polarized parallel to the fin.

If the guide were terminated at each end by a flat plunger, 6 would be
zero and solutions of Eq. (48) would exist only for ¢ = 2nr, (n = 1,
2, . . .). This means that the total length of the pipe between plungers

must be nX,/2, the familiar condition for resonances in a closed uniform
guide.
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If 4 i1s not zero, Eq. (48) shows that resonance can occur at some value
of 8 for any e within a limited range. The situation is best illustrated
by curves of constant é on the (# — ¢)-plane, asin Fig. 10-24. If § = /4,
for example, resonance will occeur for some value of 4 if € lies within the-
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F16. 10:24.—The angle of rotation 6 for the occurrence of resonance of a closed round
waveguide.
range 2nwr+w/4, (n = 1,2, - - ); and if § = 7, a resonance will occur

for some value of 8, no matter what value of eis chosen.

If resonances are to be avoided, it is clearly desirable to have § small,
thereby increasing the range of lengths for a given frequency (or, at fixed
length, increasing the range of frequencies) over which resonances are
excluded.




CHAPTER 11
DIELECTRICS IN WAVEGUIDES

By C. G. MONTGOMERY

11.1. Waveguides Filled with Dielectric Materials.—In the preceding
portions of this book, it has usually been assumed that the medium in
which the phenomena take place is either free space or a material in
which the energy losses can be neglected. It is now desired to investigate
more closely what happens when the energy losses must be taken into
account as well as to indicate the mechanism of these energy losses.
Dielectric loss can be formally described by considering the dielectric
constant to be a complex number which can be written as

e =€ — je'.

In a condenser made with a lossy dielectric, the power loss for a given
applied voltage will be proportional to the real part of the admittance.
The conductance is

G = Re (Y) = Re (juC) = Re (jwei Co>
0

! 1 X3
= Re(]wi (jo + wLCO) = (JJE‘“ Co.
€ €o €0
It is evident therefore, that the amount of energy loss is proportional to
¢’. 'The phase angle ¢ of the dielectric constant is often used as a
measure of the loss, and

17
tan ¢ = é—,
€
If € is a complex number, then the wave impedance becomes complex,
and the transverse electric and magnetic fields become out of phase.
The propagation constant y also becomes complex. If frequencies above

the cutoff frequency are considered, then

. (2
’Y=a+Jﬂ=a+J()\—W)’

and

’
w2’ u

ir

¢’ \, €

A
’

€ A\ e

:;6-:)

A
a =N = rr’; tan ¢, (1)

v
)\'3
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where M is the wavelength corresponding to the frequency w of uniform
plane waves in the medium and Ay is the corresponding wavelength of
uniform plane waves in free space. The guide wavelength A, is given by

& ey
_ ¢ M\ I €@

)\0->\o(g(; 3\;2) §+§ 14+ ;‘,—&% . (2)
Eo)\%

If it may be assumed that ¢’'/e, is small compared with unity, A, may
be expanded in powers of €'/e

! AR\ 1
kg:xo(i"‘)\fg) 1——g —,—607}\;2 + (3)

Thus, to the first order, the wavelength is unchanged by the presence of
the ¢ term in the dielectric constant. These formulas are also valid, of
course, for TEM-waves. It is necessary only to set A, = Mand A, = «.
The equations become

A= \/‘TJ L (e” 2]%}—%
= A ;, :? Q ?
T 26 .
MJRﬁﬁE@’ @

of, _ ¢ ...
)\0\/67(1 £+ )

If it is desired to express the losses of the medium in terms of an
equivalent conductivity of the medium, then the substitution

A

U

o = we
gives the results
_ N [u
*= )\0 2 \/60 (5)
and
T Mo 2
. = = Ao
€ AN\ 127 e .
= — e— [ — « e (
Ao ""(eu x%) =gl =) T : )
€o }\3

Still another set of parameters is sometimes used to deseribe a lossy
medium. The index of refraction is assumed to be complex, and quan-
tities n and k are defined by

4 1

=i = g (7)

€

€
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The quantity k& is called the absorptionindex. It can be seen that

’
€

— =n? — k%

€

- ®
— = 2nk.’

€0

The parameters n and &k are most often used when dealing with optical
frequencies but occasionally are used in the microwave region.

When a dielectric is introduced into a waveguide, the transmission loss
is increased because of the losses in the dielectric and the increase is
measured by « as calculated above. The Joule heating losses in the walls
of the waveguide are also altered. The change in the metal losses
caused by a change in the real part of the dielectric constant is a simple
one. Since the propagation constant is given by

v = k% — wlepu,

we see that a fractional change in ¢ produces a change in v of the same
amount as would be produced by the same fractional change in w2
Thus, it can be seen from Fig. 2-13 that an increase in e will decrease the
metal losses at a frequency near the cutoff frequency but will increase
these losses at higher frequencies. Since the only metals considered
here are those which have conductivities so high that the form of the
fields in the waveguide is unchanged by the losses that result, the total
loss can be computed by adding directly the values of « for the metal
and for the dielectric.

To find the effect on the metal losses of an imaginary term in ¢, a
more detailed examination must be made. In Chap. 2 it was shown that
the value of the attenuation constant for the metal, a., is given by the
expression

— 1 /W‘dlls IH"““ ’ dS s
2')‘0’ Re (Zw) |H1J2 dS

cross section

Cm

where H.. is the magnetic field tangential to the metal walls and H, is
the transverse magnetic field. Two cases must now be treated. First,
E-modes may be considered, where no longitudinal magnetic field exists,
and H, = H.. on the boundary of the waveguide. The ratio of the two
integrals in the expression for «, depends only on the shape and size of
the guide, and the dielectric constant occurs only in Re (Zs). Thus
1 _ 1 . (we')? 4 (we'")?
Re (Zy) az; T awe” + Bue’

Jme
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For a lossless dielectric,

4w

Re (Z) = B
Hence, the fractional change in the metal losses resulting from an imagi-
nary term in the dielectric constant can be written as

1 1
Aa,, _ Re(Zx)  Re (Z})
Tom 1

Re (Z¥)

- ) ) 1\
oo - 13

It is seen from this equation that the effect is of the second order in
¢'/¢. Moreover, the change can be either positive or negative, depend-
ing on whether \, is less or greater than v/2 \.

For H-modes, the situation is somewhat more complicated, because
there is a longitudinal magnetic field. On the boundary of the wave-
guide

or

|Hu|> = [H.* + |H\|?,

where H; is the longitudinal magnetic field. However, H; is proportional
to H,, and from Eq. (2-89) it is seen that

H
H, = const. —"
Y
Thus e, can be split into two parts and written as

1 B
"~ Re (Zn) (‘4 + [{(2)’

where A and B are geometrical constants. However,

Re (Zx) = Re (]if/ﬁ> = afjr“ o
since
[ = a4 5
Hence
Aa,, o’ A
AU 32 B
A4+ 52

A and B are positive quantities, and therefore Aa../a is always positive

For high frequencies, 8 becomes small and Aa,/a.. approaches o? lii and
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becomes independent of frequency. Tt is seen that the expression

Ao, tan? ¢ /AN\* A
P 6) N\ (10)
ié A+ (—") B
27

is of the second order in ¢'/¢. Here again, because a. has been calcu-
lated only under the assumption that a/8 < 1, the total attenuation is
given by a 4+ an.

11-2. Reflection from a Change in Dielectric Constant.—The bound-
ary conditions that are to be satisfied at the surface of a discontinuity
in the properties of the medium are that the tangential components of
the electric and magnetic fields must be continuous. Suppose that there
is such a discontinuity in a waveguide and that the plane of the dis-
continuity is perpendicular to the axis of the guide. The power flow

down the guide is P = liez(L“') / |H.|? ds, where the integral is taken

over the cross section of the guide. Now H; must be continuous across
the interface of the two dielectrics,

whereas the wave impedance Z, o °
will change discontinuously. /(l) (2) 21 2@
Therefore, it is clear that there 4 . py

must be a reflected wave at the R ]
R . eference

interface, and this will be sufficient plane
to satisfy the conditions at the TFis. 11.1.—Equivalent circuit for a change
boundary. Moreover, the equiv- in dielectric constant.
alent impedance that will correctly describe this reflection should be
chosen proportional to the wave impedance. Hence, the equivalent
circuit representing the discontinuity is simply that shown in Fig. 11-1.

The standing-wave ratio r is the ratio of the impedances taken i
such a way that r > 1. The position of the minimum is either at the
junction or a quarter wavelength away from it, depending on the loca-
tion of the observation point with respect to the reference plane.

The value of the wave impedance, as derived .in Chap. 2, differs for
E- and H-modes, and the two values are

Zy = Jok, Zp =Y. (291
Y Jon

For the case of no loss, these reduce to

Zy

Ao ]

2t (2:35)
Zy= 2 (2:39
FERS )

q
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where A is the wavelength in the medium and { is v/ uz/e. In terms of

the wavelength in free space, the impedance of guide (2) relative to that
of guide (1) may be written

@
VA

T (“)
and
2
Z(2) é(1) € )
- : (12)

€D Ao)?

€o xc

If €2 > ¢V, then the relative H-mode impedance decreases monotoni-
cally as ¢? increases. The relative E-mode impedance is not a monotonic

function but may increase, pass through a maximum, and then decrease.
It is easy to show that the maximum value occurs when

P AN 2
— = z(%‘) (13)

@ )
Ze e 1 ] (14)

2 a0 () 2~ (Y
AN/ N e Ao

Thus, for sufficiently large values of \o/A., there are two values of
e that make ZP/ZP equal to unity, namely,

and the maximum value is

2 = D

3
)\0 6(1)
The second value corresponds to the case of Brewster’s angle for plane
waves, that is, the angle at which, when the electric vector lies in the
plane of incidence, there is no reflected ray from the boundary between
two mediums. Figure 11-2 shows values of the relative wave impedance
for (Ao/Ac)?2 = 0.8 when ¢ = ¢,

When the dielectric material is lossy, the wave impedance becomes
complex. Its value can be expressed in terms of the complex dielectric

and
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constant as tollows. From Eq. (2-91),

L= 9K
T e+ 8

_ wup .«
‘?+ﬁ2<l+’ﬁ>

_ wi cwe''u
443

and

_ 8 B wQE”.Zp. . w?e”y _ e’
)|

we' + w—
€

(16)

It is seen from these expressions that the change in the real part of
Zy or Zg is of the second order in ¢’. For TE-modes, the presence of

1.4 -

12 N

o
o

|
|
/
|

o
a

o
»

Relative wave impedance Z

0.2

1 2 3 4 5 6 7 8
Dielectric constant € '275 0

Fic. 11-2.—Relative wave impedance as a function of dielectric constant.

loss makes the wave impedance slightly inductive; for T'M-modes, the
reactive part is either positive or negative depending on the frequency.
Near cutoff Zx is capacitive; at higher frequencies it becomes inductive.
The expressions for Zx and Zz can be transformed to a somewhat more

useful form in the following way:
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1+ j tan @ (%‘7)
- \/ N\ 17y
t 2 o
=0

T S TR 1, (N 1IN
AE-X;\/Ei('Ob ¢[1+§tdn qa<)\) Jtan ¢ s\ 1f;- (18)

The wave impedance Zx is thus purely resistive when

and its value is

Zy = T
To obtain corresponding expressions for transmission in a dielectric
medium but not in a waveguide, it is necessary only toset A, = A.

If it be assumed that guide (1) is empty and that guide (2) is filled
with a lossy dielectric, then the reflection produced at the junction can
be easily calculated. Let the dielectric-filled guide be so terminated
that there are no reflected waves from the termination. If the dielec-
tric is very lossy, then the use of a sufficient length of the material is the
obvious solution. If the dielectric has low loss, the use of a tapered
section from the dielectric back to empty guide is a relatively easy
method of obtaining a matched termination. The reflection will be
equal to that in a line terminated by the relative impedance Z = R + jX.
The quantities R and X may be obtained from the impedance given by
Eq. (17) or (18), divided by the value of the wave impedance when no
dielectric is present. If an H-mode is present, and if A, denotes the
guide wavelength in the dielectric and A\, the guide wavelength without
dielectric, then

N
\
R: ‘ xl 2
14+ —tan <p<i‘f> (19)
_ AN
X = 2th.n(‘0()\))

where N\’ is the wavelength of uniform plane waves in the dielectric
medium. Equations (2) and (4) may be used to obtain A\, and N in terms
of ¢ and ¢/. Thus, expressions for ¢ and ¢’ in terms of R and X may be
written. These expressions are useful in the determination of dielectric
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constants. If X/R = tan 6, then €'/e is given by the positive solution of

(e’>' e [;ﬂ(l + tan® 6) 4+ (1 — tan? p)° 71:—"3] + v tan® 6 = 0, (20)

€
€0 €0 R?

where v = M/X.. When ¢'/e, has been found, it is possible to caleulate

" - — v

tanga:%,:tan?(% ————— . 2n

These expressions can be simplified considerably in most cases. Thus
if o< 1and 6 K1,

1 — 2
! 1 p? 1——1}"V2+2 RQV
A LA T
v “pe
and (22)
1 — 2
o =20 — k* -
y 1 -
v: + B

If 8 is not small but »* may be neglected compared with €¢'/€y, then

tan ¢ = tan 29,

!

€

— = (] COS8 ¢,

€p €

e’ 23
—_ = = Sil’l ®, ( ” )
€y €p

€ 1 — »?

~| = ~—557- (1 — tan'$).

€ R' ( )

Suppose that the dielectric-filled waveguide-is terminated not in 2
matched impedance but in a short

circuit.  The reflection may be —d - Y.

most conveniently expressed by _"H% 27

the equivalent circuit shown in / }'17},12[51 Rt

Fig. 11-3. The value of the ad- -

mittance 11 of a transmission line Re;?;‘:;ce

of lengthdis Fie. 11.3.—Equivalent circuit of short-cir-
Y = Y, coth yd. (24) cuited dielectric-filled waveguide.

The characteristic admittance Y is given by Eq. (15) or (16), and v is
given by Egs. (1) and (2). The values of Y, have often been used to
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determine the values of dielectric constants at microwave frequencies.!
For this purpose Eq. (24) must be expressed in terms of ¢ and tan ¢
and solved. Since the equation is a complex transcendental one, it is
necessary to resort to graphical methods.

11-3. Dielectric Plates in Waveguides.—Elementary transmission-
line theory may be applied to calculate the impedance of dielectric plates
perpendicular to the axis of the waveguide. A few simple cases will be
discussed to show certain applications of dielectric materials to microwave
techniques. Let it be assumed, for the moment, that losses may be
neglected. The impedance at the face of the plate is

1 4 37 tan Gt

Z ¥ jtan Bt

where Z is the relative impedance and ¢ the thickness of the plate. When

Bt = nw, where n is an integer, Zi, = 1. Thus a plate n half-wavelengths
20

Zin=Z

-
=]

™ /
N )
N |

09 10 11
Wavelength ratio A
o

g
n

=
N

Standing-wave ratio
-

=
o

Fig. 11-4.—Variation of standing-wave ratio with wavelength for a dielectric plate one-
half wavelength thick.

thick is reflectionless. The standing-wave ratio introduced by the plate
is

_ 22 = 1) tan Bt + /42> + (Z + 1) tan® Bt

[(Z% — 1) tan Bt} — A/4Z?* + (Z? + 1)? tan® 8¢

Figure 11-4 shows the variation in r with wavelength in the neighborhood

of the wavelength Ay when the plate is a half wavelength thick. The

dielectric constant is e/e; = 2.45, and No/A. = 1/4/2. If the dielectric

is lossy, there is no plate thickness for which the reflection is zero. For
small values of i,

(25)

1 — jgt 1 'Zz2,
1 — Z2
Z
1 8. Roberts and A. von Hippel, “A New Method for Measuring Dielectric Con-

stant and Loss in the Range of Centimeter Waves,” Contribution from Department of
Massachusetts Institute of Technology Electrical Engineering, March, 1941,

Zy

r

1+ 8t
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The thin dielectric plate is thus equivalent to a small shunt capacitance
across the waveguide. By means of an inductive iris placed at the face
of the plate, the circuit may be made resonant and reflectionless.

It is possible to construct a tuning device of two movable dielectric
slabs each one-quarter wavelength thick. When the two slabs are in
contact, the combination is reflectionless. When they are separated by

NN
R
W\

\\
AN

v\\\/

Fro. I'l-5—Impedance chart illustrating the use of two movable quarter-wavelength
dielectric slabs in waveguide as a tuning device.

a quarter wavelength, the reflection is a maximum and corresponds to a
resistance R, given by

for H-modes, at the face of the first dielectric slab. Thus, referring to
Fig. 11-5, the impedance at the face of the first slab can have values along
the boundary of the shaded circle. If the combination is moved, as a
whole, along the guide, all impedances within the larger circle can be
attained at a given point.

It is also possible to insert a quarter-wavelength transformer to match
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from an empty guide to one filled with a dielectrie, the transformer sec-
tion being composed of the guide filled with a dielectric having a dielectrie
constant of an intermediate value. This intermediate value, for H-modes,
is such as to make the guide wavelength the geometric mean of the guide
wavelengths in the full and empty guides. It should be noted that no
end corrections are necessary, since the junction effect is absent.
A plate composed of a lossy dielectric can be treated in a manner simi-
lar to that for the lossless plate. The expressions become much more
complicated in form, but their

100 derivation is straightforward.
The general nature of the behavior

0.90 may be seen from Fig. 11-6 which
\ shows some experimental values of

080 rrams the transmitted and reflected
070 \Poc power as a function of the thick-

ness of a piece of plywood in wave-
/\ guide. The observations were
taken at a wavelength of 10 cm in
1.5- by-3-in. waveguide.

11-4. The Nature of Dielectric
Phenomena.—In a homogeneous
isotropic dielectric medium, the
electric displacement differs from
its value in free space by the polar-
020 / \ P ization P which is the electric

Fraction of power

o o o

8 & 3
ol ]
s

o
w
=

2 moment per unit volume in the
010 inc i
‘ b/ medium;
. P=D — ¢gE = (¢ — ¢)E. (2
% 1 2 3 & 5 6 € (¢ = @B (26)
Thickness in cm The electric susceptibility x, is

Fm_. 11-6.—Experimental values of related to P by
transmitted and reflected power as a func-
tion of the thickness of a plywood plug in P
waveguide.

€

Xe—;Ei_;)_l'_kc—]“ (27)
If there are N molecules per unit volume and the electric moment of one
molecule is m, then P = Nm. To explain the observed value of the
dielectric constant and its variation with frequency, it is necessary to
consider the nature of the mechanisms whereby molecules can acquire an
electric moment. If a small conducting sphere of radius a is placed in
an electric field F, the conduction electrons will distribute themselves in
such a way that the sphere acquires an electric moment equal to 4wea®F.
In a similar manner the electrons in a molecule will redistribute them-
selves in such a manner that the molecule will acquire an electric moment
whose magnitude is proportional to F  We write m = o,F and call o,
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the polarizability of the molecule.  This polarizability will be inde-
pendent of temperature. On the other hand, the molecule may have,
by virtue of its structure, a permanent electric moment of magnitude m.
When the field is applied, the molecule will tend to turn and align itself
with the moment in the direction of the field. This alignment will be
destroyed by the collisions and other random forces that the molecule
experiences. Since the energy of the electric moment when it makes an
angle 8 with the field F is —mF cos 6, the mean value of the moment may
be calculated by means of Boltzmann’s distribution law,

f emruso(f‘/kT) m cos 6 dQ
m = )

f Cmcosﬂ(F,’kT) dQ

where dQ is an element of solid angle, k is Boltzmann’s constant, T is
the absolute temperature, and the integrals are taken over all directions.
For values of T such that kT >> mF, it is found that
_ _ mF
= g (28)
Thus a permanent electric moment results in a polarizability that is
inversely proportional to the absolute temperature. Strictly speaking,
m should be calculated not from the classic Boltzmann law but from the
corresponding quantum-theory expression. However, it is easily shown
that for the case of high temperatures, an identical result! is obtained.
The expression for the total average moment per molecule is, then,

2
o= (al + %) F. (29)

1t is now necessary to find the value of 7, the total field acting upon the
molecule. This field is made up of a contribution from the external
applied field £ plus the contributions from the fields of the other dipole
moments in the medium. The contribution of the dipoles is very difficult
to estimate. This is evident from the fact that the number of dipoles
at a distance r from the point under consideration is proportional to
4rr? dr, and the field of a dipole is proportional to (cos 8)/r3. Hence the
total effect is proportional to [(4x cos 6/r)dr. For large r this integral
vanishes, since there are equal contributions from those regions where
cos 8 has opposite signs. For small r, however, the integral diverges
and the value of the field is extremely sensitive to the particular assump-
tions made about the nearest neighbors of the dipole under consideration.

1 For a more complete discussion of the details of the quantum-theory calculation,

the reader is referred to J. H. Van Vleck, Electric and Magnetic Susceptibilities, Oxford,
New York, 1932.
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In the case of a gas, no very large error is made by neglecting the field of
the other dipoles entirely and putting F = E. For more concentrated
substances, the next approximation may be considered to be the classic
one of Clausius. Clausius assumed that the dipole could be thought of
as being within a small spherical cavity within the medium. In this
case
P
F=r4+ 1. :

+ 3, (30)
The use of this expression for F, together with the equations already
obtained, to find e results in the relation

N m2
c o (“1 + m)
o 1T W mry
[} i
: 3‘(“ + m)
or, as it is more usually written,
€
- —1 ; 2
€ _ A/ i
f 42

This approximation for F is not a very good one, and more exact expres-
sions have been given by Onsager! and Kirkwood.? We have, however,
established an important fact which is true regardless of the expression
for F, namely, that the polarization consists of two parts, one part that
is independent of temperature and depends on the shift of the charge
within the molecule and one part whose contribution decreases with
increasing temperature and is caused by the permanent electric moment
of the molecule. The dependence of the dielectric constant upon
temperature will be that of the temperature dependence of the polariz-
ability, in general, since the effect of the local field would not be expected
to be greatly dependent upon temperature.

The effect of frequency on the polarizability is again a twofold one.
Since, in the microwave region, the natural frequencies of the molecule
are large compared with the frequency of the radiation, the molecular
polarizability «; is independent of frequency. When the frequency of
the radiation approaches a natural frequency of the molecule, then o,
changes and gives the familiar anomalous-dispersion curve for the fre-
quency variation. The lowest natural frequencies of most molecules lie
in the infrared and do not influence the values of the dielectric constant
at microwave frequencies. The effect of the rotation of the electric
moment, however, will be strongly dependent upon frequency. This

' L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936).
2J. G. Kirkwood. J. Chem. Phys., T, 911 (1939).
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effect was first explained by Debye,! who showed that the transient part
of the effect of collisions is similar in character to the effect of viscous
forces that impede rotation. At low frequencies, these viscous forces
would be small and the dielectric constant high. At high frequencies,
the forces would be so large that, effectively, the molecules would be
prevented from aligning themselves and the dielectric constant would be
low. Thus, if the viscous forces are proportional to the rate of change of
moment,

1 —i—ij’
where r is a “relaxation time” that is characteristic of the material and
ap is the value of a at w = 0, namely,

(32)

X

m2
@ = g (33)
If the Clausius hypothesis is used for obtaining the value of F, then
£ m’
€9 _ N m
<y B\ T T/ 34)
0

A rearrangement of this expression, and separation of the real and
imaginary parts of ¢, gives

; €& — €,
€ = ¢, + T y2’
no_ €& T €y
€ = 1 + y2 Y, (35)
where
_ &1 26
Yy = o F % wT (36)

and ¢, and ¢, are the values of e at zero frequency (static value) and infinite
frequency (optical value), respectively. In terms of the molecular

constants,
N 23] + + 1
3 3kT
€g = € N mz (37)
L ("“ + 3kT)
and
2
_éV a; + 1
€, = € ———
* Noq
1 3

' P. Debye, Polur Molecules, Cheniical Catalog Co., 1929.




380 DIELECTRICS IN WAVEGUIDES [Sec. 11-4

Thus we see that ¢ decreases monotonically from ¢ to e, whereas ¢’
increases from zero, passes through a maximum, and again decreases to
zero. The maximum value of €’ is (&, — ¢.), 2 and occurs when y = 1.
At this frequency ¢ = (e + ¢,) 2. The quantity e is a relatively
slowly varying function of frequency, and the change from e, to ¢, takes
place over a range of at least a factor of 100 in frequency. Debye has
compared this expression with experimental determinations and finds
good agreement for substances in which Clausius’ hypothesis may be
expected to hold. He finds values of the relaxation time of the order
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¥16. 11-7.—Variation of the dielectric constant of water with frequency.

of 1071° sec for liquids and 10~?% to 108 sec for a solid, ice. These values
are entirely reasonable judged from crude estimates made from the
known values of the viscous forces. A viscous force of this kind would
be expected to be strongly dependent on the temperature at all frequencies
at which the polarity of the molecule contributes to ¢, and indeed this is
the case. For a strongly polar liquid, such as water, the agreement is not
exact, but the general nature of the frequency variation is unaltered.
Figures 11-7 and 11-8 show some experimental values® for the dielectric

! The observations from which the curve was drawn were taken from E. L.
Younker, “Dielectric Properties of Water and Ice at X-band,” RL Report No. 644,
December 1944, A. von Hippel, “Progress Report on Ultrahigh-frequency Dielec-
tries,” OSRD Report No. 1197, December 1942, and the references cited in thesc
reports. Somewhat different conclusions have been reached by J. A. Saxton, “The
Dielectric Properties of Water at Wavelengths from 2 Mm to 10 Cm, and over the
Temperature Range 0° to 40°C,” Paper No. RRB/('115, April 1945. Saxton con-
cludes that the experimental evidence indicates that the Debye theory correctly
represents the facts for water. If this is the case, water is very exceptional, since
most dielectric liquids seem to possess a whole range of relaxation times,
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constant of water as a function of frequency for a temperature of 25°C.
The dotted lines show the values predicted by the Debye theory. For
higher temperatures the maximum value of ¢’ occurs at a higher fre-
quency corresponding to a shorter relaxation time. It is seen that
although the observations on water agree qualitatively with Debye’s
theory, the quantitative agreement is rather poor. The observed
dielectric constant seems to change considerably more slowly with fre-
quency than the theory predicts, and this is true for the imaginary as well
as the real part. The maximum

. 08
value of ¢’/ is observed to be lower ,/
than the theoretical value. Both 07 /
of these deviations are what would 06 VAR
be expected if not one but many 05 4
. . S Theory|,/ /
values of the relaxation time r < g4
. 8 e
exist! whose mean value corre- 03 V%
sponds to the frequency at which 0'2 P
¢’ is a maximum. A valuable ' EXPeL’i’"E“
summary of the work in this field 01 —== l T
has been given by Kauzmann.? 0 3
If the dielectric medium h 10 10
€ dielectric medium hnas, Frequency in Mc/sec
in addition to the above-men- Fic. 11-8.—Variation with frequency of the
tioned properties, a conductivity loss tangent of water.

that is not negligible, this may be described, as has been shown, by an
imaginary portion of ¢ which varies with frequency as

In all known cases, ¢ is independent of frequency, and this introduces a
frequency variation for ¢’ different from that caused by polar relaxation.
For most dielectrics, ¢ is so small that the contribution to ¢’ from this
effect is negligible at microwave frequencies.

In Table 111 are given selected values of measured dielectric con-
stants for three frequencies. It will be noted that €'/ep usually decreases
slightly and that tan ¢ increases as » increases. This is good evidence
for the presence of permanent electric moments. However, it obviously
is possible to have relatively loss-free materials even at very high fre-
quencies. Care must be taken to choose a substance that contains polar
molecules only as impurities in the dielectric. These impurities can be
removed or at least minimized by carefully controlled manufacturing

LIf there is a distribution of relaxation times, Eq. (32) is to be replaced by an
integral expression similar to that given in Eq. (68) in Sec. 11-9. Several forms of the
distribution law have been proposed, all agreeing equally well with experiment.

2 W. Kauzmann, “Dielectric Relaxation as a Chemical Rate Process,” Rev. Mod.
Phys., 14, 12-44 (1042).
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processes. [t is more difficult to exclude the presence of moisture.
Water molecules have such a large electric moment that even a small
percentage of moisture is sufficient to cause an objectionable amount of
loss. Many plastic materials contain sufficient moisture to affect the
amount of dielectric loss, and this loss becomes larger the higher the
frequency. The large values of tan ¢ at 60 cps are caused chiefly by
the presence of a real conductivity.

TaBLE 11:1.—DieLeEcTRic CONSTANTS

v = 60 cps; » = 108 cps; v = 101 ¢cps
Substance , ) ) ,

£ tan ¢ < tan ¢ £ tan ¢

€9 €p €y
Steatite ceramie, Alsimag 243.} 6.3 0.0015 6.2 | 0.0004 5.4 | 0.0002
Ruby mica.............. .. 5.43 | 0.005 5.40 | 0.0004 5.4 | 0.0003
Quartz, fused...............| 3.85 ] 0.0009 3.82 | 0.0002 3.80 | 0.0001
Corning glass—702P. ... . .. 4.75 | 0.009 4.55 | 0.002 4.40 | 0.006
Corning glass—705A0. . .. 5.00 | 0.03 4.75 | 0.004 4.70 | 0.007
Corning glass—707DG. . .. 4.00 | 0.0006 4.00 | 0.0008 3.90 | 0.001
Black Bakelite,........ .. . 5.0 0.10 4.9 0.03 4.7 0.05
Lucite..................... 3.3 |0.07 2.6 0.015 2.5 | 0.005
Plexiglas............... . 3.4 0.06 2.7 0.015 2.5 0.005
Polystyrene.................| 2.51 | 0.0002 2.51 | 0.0003 2.45 | 0.0005
Polyethylen=............... .| 2.25 | 0.0001 2.25 | 0.0001 2.25 | 0.0002
Apiezon W... ... ... .. .. 2.80 | 0.022 2.65 | 0.0025 2.62 | 0.002
Paraffin............ ... .. ... 2.25 | 0.0002 2.25 | 0.0002 2.20 | 0.0002
Mahogany plywood, dry. . ... 2.4 0.01 2.4 0.02 2.0 0.02
Water, 25°C............. ... 79. (3000) | 79. 0.03 59. 0.46

11.5. Ferromagnetism at Microwave Frequencies.—Most substances
are characterized by a value of the magnetic permeability that is inap-
preciably different from the permeability of free space, the ratio being
1 4+ 107%. For nearly all purposes this small difference can be neglected.
However, the ferromagnetic substances, iron, nickel, the Heusler alloys,
and a few others, have permeabilities relative to free space that are large
compared with unity. In addition, all these substances are characterized
by hysteresis, and no simple relation such as B = pH obtains. Never-
theless, for small amplitudes of a sinusoidally varying field it can be said
that the amplitude of B is proportional to the amplitude of H. Because
of the energy loss caused by hysteresis, it is necessary to have a perme-
ability that is complex, exactly analogous to a complex dielectric con-
stant. This may be written

124

p=u — gu tT = tant. (38)
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Likewise the expression for the propagation constant and wave imped-
ance in a ferromagnetic medium is more complicated;

v? = k? — ol 4 jwlen’,
7 = Jor' + wp'” (39)
Y

It is seen that ¥ has a real part and Zy an imaginary part, both of which
are representative of the energy loss from hysteresis. Since, however,
most ferromagnetics are metals or at least semiconductors, an imaginary
part of the dielectric constant must also be included. The result is

72 = k% - wQ(EI#I — EI’ II) + Jw2(€’lﬂ’ + E,M”) (40)
It is found that
’ 7
a=w«#§%mn¢4-mnDR4ﬂ

77
B=w»\'%R%’

2

k
R=1—~tanptan ¢ 2,#,

(41)

where

?psec? { — 2(1 — tan ¢ t s L
+ | sec? ¢ sec? ¢ ( an ¢ tan {) e '+w“e'2u'2

In terms of the other variables,

27r EN#I + EI#N "
N T Niic
0 \/2 €olo (42)
g = 2r 1 %,

% /3

where

g - e — 'y ()ﬂ))z + I:[elzh_‘lz _ 25# — ' é? 2+ ﬁ’ 4 }‘i.
€0Mo A, (60#0)2 €0M0 A Ac

The wave impedance can be calculated from

7. = awp” + Bwp’ + jlaws” — Bup”)
i ot + gt

(43)

The denominator in Eq. (43) can be written

: 27\’ [|€|2|#|2 en — '’ ()\o) (J\o)4 H
2 2 . [T . Ao A0 .
o+ <)\o) €aug 2 €010 Ac + Ac
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For a ferromagnetic metal, ¢ may be neglected in comparison with
¢/, and the wave impedance reduces to

T = g VB R = V= 0 (44)

The losses in a ferromagnetic metal can thus be expressed in terms of a
skin depth & as in the case of ordinary metals,

8 = J 2 (45)
WO Heff

1000 where the effective permeability
D Begt 1S

Mohrit\g\ ot = lu| + u". (46)

A \ Few experimental investigations
N of the properties of ferromagnetic
N N metals have been made, and very
N little is known about them.! In
Arkadlew . Fe Fig. 11-9 are reproduced some
Ni observations of Arkadiew?® and
N L Mgohrning?® of the values of p.: for
i iron and nickel.
\ An example of a nonconduct-
ing ferromagnetic substance is a
finely powdered iron dust bound
10° 10} 10° 10" together by an insulating plastic
Frequency in cps such as is frequently used for cores
Fia. 11-9.—Effective permeability of iron and in high—frequency transformers.
nickel vs. frequency. The sample of material that has
been measured was approximately 50 per cent iron by volume. For a
frequency of 3000 Mc/sec, it was found that

100

—
(=]
yd

Effective permeability pogy = L | +p"

1

’ I3

£ =20, £ -32
() Mo
€ #N
C— 14, L= 32
€o Ho

tan ¢ = 0.07, tan ¢ = 1.3.

1 A recent summary has been prepared by J. T. Allanson, “The Permeability of
Ferromagnetic Materials at Frequencies Greater than 105 ¢ps,” Central Radio Bureau
2545, WR-1157, JKIA 4281, Apr. 21, 1944,

2 W. Arkadiew, Physik Z., 14, 561 (1913).

3 N. Mohrning, Hochfrequenztechnik w. Elektakus, 53, 196 (193%).

4 The material in question was an experimental sample of polviron furnished by
H. L. (‘rowley and Co., Inc., West Orange, N. J.
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These values were calculated from measurements of the impedance of
small pieces of the material placed in a coaxial transmission line, as
described earlier in this chapter for dielectric plates. The value of
€'/ € 18 high because of the presence of the conducting iron particles which
are polarized under the influence of the field. The point corresponding
to these observations is plotted on Fig. 11-9 for comparison with the
results for the solid material.

It may be seen by reference to the expression for Z, in Eq. (43) that
mixtures of this sort can be compounded to make Zy have any arbitrary
real value. If the imaginary part of Z » is set equal to zero,

2 = tan ¢

8
From Eqgs. (41), for k. = 0, is found the condition that ¢ must equal ¢.

If this is true, then
Zy = \/‘: (47)

7 7
i—: \/Zi (tan ¢ + 7). (48)

11.6. Guides Partially Filled with Dielectric.—Let us consider the
case of a waveguide containing two dielectric mediums, the boundary
between the mediums being along the axis of the guide. The propaga-
tion constant and the impedance relative to that of empty waveguide
specify completely the properties of such a configuration, and the method
of caleulating these quantities will be shown. L&t us consider only
rectangular waveguide in the lowest H-mode. It would be possible to
follow the usual procedure, described in Chap. 2, of choosing the solution
of the wave equation for H, that satisfies the boundary conditions.
These conditions include not only the usual one that the normal deriva-
tive of H, vanish on the wall but also an additional condition which must
be satisfied at the boundary of the two dielectric mediums. This
procedure is straightforward, but there is an easier method of obtaining
the propagation constant. As has already been shown, any one of the
three directions may be regarded as the direction of propagation of the
waves in rectangular guide. Then an equation for the propagation con-
stant in the z-direction can be found from the condition that a standing
wave must exist, for example, in the z-direction. Since expressions for
the impedance of a guide completely full of dielectric have already been
obtained, it is possible to write down this condition immediately if the
direction perpendicular to the dielectric interface is chosen. This
method of approach was first devised by Frank,! and some numerical
results obtained by him will now be discussed.

' N. H. Frank, RL Report No. T-9, 1942.

a+ 8 =
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Let us consider the configuration shown in Fig. 11-10. Here a longi-
tudinal slab of dielectric of thickness d is placed in the center section of a
rectangular guide of width a. The electric field E is a maximum at the
center of the guide. The admittance looking from the center of the guide
in the z-direction must therefore be zero. If the losses in the dielectric
are negligible, the admittance at the center will be

Y’ + jY® tan (K;w g)

Yin = YaZ)

b

Y@ 4 jY’ tan (xf’ g)

where Y’ is the admittance looking to the left, at the left boundary of the

16
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Fig. 11-10.—Variation of Ai/A; with a/\1 for various values of d/a, when e:/e = 2.45,
Case I: Dielectric in center of guide.
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dielectric. Just as in the case of a guide completely filled with dielectric,
a small amount of loss produces only a second-order change in A,. If
Yo = 0, then

. d—a
Y =Y tan (x‘,” 5 ),

where Y and Y{» are the characteristic admittances of portions (1)
and (2), respectively. Setting Yu = 0, we have
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Yo d—a d
ng) tan & ~5— = — tan k@ 5 (49)

We know, however, that

Y2 — 2;" ’ — 2_1!' ’
(K:; ) - ()\!) (xﬂ) ’
() = -(f—") - (f—") ! (50)

Y(O 1) K(zl)

o)
Y@ «@

where A, is the wavelength of a plane waye in medium (1). Equation (49)
is thus a transcendental equation for A, and can be solved numerically.

16 .
i | | | 4= 10
14 Q@ Denotes cutoff value Tac- %ﬁégg
) for next higher mode (TEjq) | — 105
12 7 /ﬁe/ 0375
// Lo |_028
w0 4 // A/e//
/ L_-0.167
lo—7
08 / / — | — & o
Y / /
06 / / 7
04 /
IaARES
02 J/ / { : kg=245
0

0 0.1 02 03 04 05 0.6 0.7 08 09 1.0 11
a

Y
F1ae. 11-11.—Variation of Ai/A; with a/\1 for various values of d/a, when e:/e = 2.45.

Case II; Dielectric at edge of guide.

The results are given in Fig. 11-10, which shows A1/, as a function of a/\;
for a series of values of d/a for the case where e;/e; = 2.45. It is to be
noted that for small values of d/a there is a large change in \, whereas the
change in A, between d/a = 0.75 and d/a = 1.0 is very small. This is
obviously because, for small d, dielectric has been added where the field
is high and the effect is much larger than when the dielectric is added
where the field is weak.

A second simple case is shown in Fig. 11-11. The equation for X\,
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now represents the condition that the impedance looking to the left
vanish on the right-hand boundary of the waveguide. We have

ZE)?)
2 tan «2d = — tan«xP( — a), (51)

ZB))
where P and «2» are defined by Eqs. (50) and
Z(02) }r'(ol)
For ey/e; = 2.45 the results of the calculation are as shown. It is seen
from the curves that for small values of d the effect is small. As the

dielectric interface approaches the center of the waveguide, the effect
becomes much larger and then decreases again as the region of weak

_
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Fia. 11-12.—Variation of A/A, with b/\. Case III: Dielectric at bottom of guide.

fields near the right-hand wall of the guide is approached. The circles
on the curve indicate the values of a/\ for which the next H-mode can
propagate. The losses have again been neglected.

Figure 11-12 shows a somewhat more interesting example. The pre-
ceding cases involved a mode of transmission that was transverse-electric
both in the direction normal to the dielectric interface and in the direction
of propagation. In the present case, if the interface normal is chosen as
the reference direction, the field configuration may be considered to be
that of an E-mode. The field has components E., E,, E., H,, and H,.
Hence, with respect to the z-axis, the mode is neither a pure E-mode
nor apure H-mode but must be a combination of the two. The
impedance method of calculation is still valid, but now the E-mode
impedance [Eq. (11)] is used as the characteristic impedance of the lines.
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The results for a particular case are shown in Fig. 11-12, for the values
e/e; = 2.45 and b/a = 0.45, for a guide half full of dielectric. Figure
11-13 shows the variation with d/b 16
for two values of b/x. This case
has been treated in a more general
fashion by Pincherle,! who dis-
cusses other modes in rectangular b-03
guide. Pincherle also examines a 12
waveguide of circular cross section

14

>
o
[l
o
B
o
]

A

with a dielectric rod down the %ﬂ 10 :
center. This case can be con- / . 1'5
sidered from animpedance point of 08 "i |
view by the methods of Chap. 8. ¢

11.7. Dielectric Post in Wave- 06 g= 045
guide.—If there is a cylindrical k=245
dielectrie post of circular cross
section in rectangular guide 04, 02 04 06 08 10
operating in the H,,-mode, which %
extends in the direction of E at Fre. 11-13.—Variation of \/\, with d/b for
the center of the guide, the rela- two values of b/\.

tive admittance Y can be expressed by the simple formula of Frank,?

Lojelmdiimeoo(2Y g
F oo, | ™R T V12X T 2\aR e

where R is the radius of the post and ¢ the width of the waveguide. This
expression was derived for the case for which |e/e| (2rR/N)? < 1 and
the series arms of the equivalent T-network have a negligibly small
impedance. The expression is valid to within 3 per cent for the range of
wavelengths given by # < a/» < 1, provided that the radius of the post
is small enough.

The expression holds for a complex e as well as for real values. It is
possible to solve for ¢ in terms of a measured ¥ and in this way measure
dielectric constants. For example, it was found for a = 0.420 in. and
A = 1.25 cm, a column of water for which R was 0.009 in. had a measured
admittance of 1 — j. The value of ¢/¢y deduced from this was

€ .

For real values of ¢, ¥ = jB, where B is positive and hence a capacitance.
It is evident from an inspection of the formula that the frequency

L L. Pincherle, Phys. Rev., 66, 118 (1944).
*N. H. Frank, RL Report No. T-9, 1942, Sec. V, p. 32.
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variation of the admittance is not at all that of a capacitance in the low-
frequency approximation. For posts of larger radius the above expres-
sion is not accurate and a much better formula is given in Vol. 10 of this
series.

11.8. Cavities Containing Dielectrics.—When a resonant cavity is
filled with a dielectric material, both the resonant frequency and the @
of the cavity are changed. Conversely, if it is desired to maintain the
same value of the resonant frequency, the dimensions of the cavity must
be altered. If the losses are assumed to be small, then it is easy to see
what this change in size must be. The form of the fields should remain
the same under such a change, with the result that if ¢ is altered, the
operator V2 + 4% 4+ w?p must change only by a constant factor. If
e is changed by a factor f2, then all the linear dimensions must evidently
be changed by a factor 1/f if w is to be kept constant. The losses in
the metal walls will be proportional to 1/@Q or to 8/1, where § is the skin
depth and [ some dimension of the cavity. Thus it is seen that Q also
changes by a factor 1/f.

If the loss in the dielectric is to be included, then to the value of
1/Q for the metal losses must be added a quantity 1/Q: corresponding to
the dielectric loss. However, the dielectric loss per cycle is propor-
tional to the square of the electric field and so is the stored energy. The
conclusion is, therefore, that 1/Q; is independent of the mode and of the
size of the cavity and is equal to ¢’/¢ = tan ¢. Thus, for the cavity
and dielectric

1 1
Q = —Qmetal 4 tan @.

This equation is correct as long as the losses in the dielectric are not
large enough to alter the resonant frequency of the cavity. From the
table of dielectric constants given above, it is seen that the @ of the
dielectric can be as large as several thousand at microwave frequencies.
In general, the metal losses may be neglected in comparison with the
dielectric loss.

Consider now a cavity only partially filled with dielectric. The cases
that can be treated simply are those in which the surface of the dielectric
is perpendicular to an axis of the eylindrical cavity and parallel to the
end plates. The wavelength in waveguides partially filled with dielec-
tric have already been dealt with, and the results are immediately
applicable here. Thus Figs. 11-10 to 11-13 inclusive make it possible
to find the resonant frequency in these cases by direct utilization of the
condition that the length [ of the cavity must be

A

l=nlr

2
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where n is an integer. The information given in these figures does not
make it possible to find the @ of the cavity. We notice that @, the
dielectric @, will depend on the mean value of E? in the dielectrie, relative
to the mean value of E? in the whole cavity, and hence Q,, as well as
the resonant frequency, depends on the position of the dielectric within
the cavity.

To find an expression for @, it is convenient to regard as the direction
of propagation the direction of the
normal to the dielectric interface as
before and let this be the z-axis. %, -
The metal losses will be neglected. o @
Let the cavity walls be located at 2=0 z=a z=]
2 =0 and z = [ and the dielectric Fig. 11-14.—Field distribution in a cavity
. . . containing a dielectric material.
interface at z = a, as shown in Fig.

11-14. The tangential electric field in region (1) is 4 sin 8;2; and in region
(2), B sin 82(I — 2). At the interface

A sin 8ia = B sin 3.(I — a). (52)

The condition of resonance is determined from the continuity condition
of the derivatives, or

,B1A cO0s ﬁla = —ﬁzB [0 ] Bz(l - a). (53)
If the value of B from Eq. (52) is inserted, then

cot 8ol — a) = — %cot B1a. (543

2
The Q of the cavity is then given by
¢ ﬁ) A?sin? Bz dz + € /:B2 sin? By(l — 2) dz
s [ azsint predz + & [ B sin® gal — 2) da

(55)

Substitution for B from Eq. (52) and the use of Eq. (54) reduces this to

aM + N

O= g (56)
where

M=a— 1 sin B1a cos 8.4
B

2
N=(1—a)sin?Ba+ (I — a) % wBia + g—; sin Bia cos Bia.
2 2

A calculation similar to this may be made for radial cavities. For
this problem, it is convenient to employ the radial transmission-line



392 DIELECTRICS IN WAVEGUIDES [SEc. 11-8

theory, a discussion of which is found in Chap. 8. Feenberg! has made
accurate calculations for the case of a cylindrical rod of dielectric in
the center of a pillbox-shaped cavity operated in the mode in which the
electric field is perpendicular to the end plates. The results are expressed
in tables and curves for convenient use.

One other important example of the use of dielectrics in cavities
remains to be discussed, namely, a dielectric material filling a hole that
is used for coupling to the cavity. For example, a glass window sealed
to the metal cavity might be employed as a pressure seal in the coupling
aperture. Unfortunately, little is known in detail about such con-
figurations, and the discussion must be confined to a few general remarks.
The somewhat simpler case of a diaphragm, the opening of which is

filled with dielectric, placed across a rectangular
waveguide operated in the dominant mode may
I~ I Y, be considered. The loss in the dielectric is pro-
portional to the total electric field in the aper-
- ture. A portion of this field, namely, the
lentFIc?r'wiilf'(l)f 'Thf%u;m: dominant-mode portion, is given by the equiva-
nant-mode current in a lent-circuit arguments. The circuit, shown in
dielectric-filled iris. Fig. 11:15, is driven by the constant-current
generator I, the iris being represented by the admittance Y. The

current, through Y will be

1Y
2Y, + v

and the voltage across Y will be

(2—Y01$' Y3 . Total loss

. P . inant mod
This quantity is proportional to the Dominant mode

dominant-mode field; therefore its
square is proportional to the dielec-
tric loss. It isevident that the loss
decreases monotonically as Y is
increased. To this must be added
the loss produced by the higher- Admittance of aperture ¥

mode fields. If theapertureiscom-  Fie. 11-16.—Loss vs. admittance for a
pletely open, no higher—mode felds dielectric-filled coupling aperture.

are excited. This is also true when the aperture has no opening. Thus
the dielectric loss caused by the higher modes will be zero when Y is zero;
and as Y increases, the loss will increase, pass through a maximum, and
then decrease again, approaching zero as Y approaches infinity. The
total loss may then be represented as in Fig. 11-16.

Dielectric loss

Higher modes
7

! E. Feenberg, ‘“ Use of Cylindrical Resonator to Measure Dielectric Properties at
Ultrahigh Frequencies,” Sperry Gyroscope Co., July 1942.
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To obtain guantitative values, it is necessary to find the exact valye
of the field at all points in the aperture. This will, of course, depend ou
the shape as well as on the admittance of the diaphragm.

11.9. Propagation in Ionized Gases.—In the preceding sections, the
effects of a complex dielectric constant or a complex permeability were
considered. The problem can equally well be formulated in terms of a
conductivity of the medium, this conductivity being a complex quan-
tity. For certain applications the formulation in terms of conductivity
has a more direct physical interpretation and is often useful. A case in
point is the problem of the effect of an ionized gas on the passage of
electromagnetic waves through it. The general expressions for y and
Z 4 will first be derived, then specific application to ionized gases will be
made.

For simplicity let us consider the dominant mode in rectangular
waveguide, where k. = w/a. The propagation constant v takes the form

2
vE = (g) + Jwus — wlep, (57)
when the medium filling the waveguide has a conductivity ¢. If ¢ is a
complex quantity, it may be written
o =0o — jo'’. (58)
The propagation constant is then

2 1
v = (g) + Jop’ — Wi (e - %) (59)

Thus ¢'’/a is the contribution to the dielectric constant of the con-
ductivity of the medium. It will be assumed that ¢ and p are real. If
it is remembered that v = a + 73, then

2 2 14 2
e - e

2\? 14 - 2
e e (0 e

If the substitution of

(60)

and

is made, then

-]
w6
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1t should be pointed out that X and A, are the wavelengths in the medium
and in the waveguide, respectively, when the conductivity o is zero.
The expression for 8 may be written as

2r\’ | . :
wpo'’ — ()\_:r) + ]wuo'" — [wy,a'” - (z—:) } (62)

In the special case that ¢’ = 0,

26 =

., 2.,\? '2 2
el
Thus if
2r\’ > y
E W -,
2
g = <§I) — wpe’ > 0;
(4
and if

2r\?

()\—T) < wuo’’,
']
Br=0.

In the latter case, the waveguide is beyond cutoff. The cutoff wave-
length in the waveguide is

2
()\g)cutoﬂ = ‘\/T[.w”

The following approximate expressions are useful. If
" 27r z 7
wpo — \— | > wud,
Ay

—_”——TZ 1 2,272
RV () {1+§[—M””—‘“‘<27)T+--- 6
. , —{ -

: (63)

Ao

and
'

g = laid

B "o_ 27 3

If the opposite situation is true and

wuo’ 2w\ 2

wuc”’ < (g) ’
!

o= — B (65)

then
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and

T—z——“: 1 2,272
b= \/(X_T) B 1+§[<2—:>56 ,,]2 T
— o

(4

In all the above expressions, the corresponding formulas for uniform
plane waves may be obtained by the substitution A, = \.

The wave impedance Zx can be found by making substitutions in
Eq. (15),

4wup .o’
Zn = 164 :_ P (1 +17 ;T_;;) (66)
When 8 = 0, .
_ Jur,
Zy = = (67)

To illustrate the application of these formulas, let us consider a gas
containing positive ions and electrons and having a net charge of zero.
The complex conductivity has been calculated by Margenau! by kinetic-
theory methods. Margenau finds

_4 el ® et dt
T 3@mmkT%E Jo % F jpo
where [ is the mean free path, n the density of charged particles of charge

¢ and mass m, k is Boltzmann’s constant, and T is an effective tempera-
ture defined by

a

(68)

Me2E?
6m2wk’
where M is the mass of the heavy particles and E is the amplitude of
the electric fields. The quantity p is a mean free time, and

¥%
m
P = l(2lc—T) . (70)

If only small fields are considered, the difference between T and T’ may
be neglected. It is seen immediately that the effects of the positive ions
may be neglected compared with those of the electrons because of the
occurrence of m in the denominator of the expression for . This expres-
sion reduces to simple form when the frequency is very low or very high.
For low frequencies, that is, for

T"=T+4 (69)

2 M
o Lopp
4 etln _ .we“l’n_
3 @emkT)% 7 3ET

t H. Margenau, Phys. Rev., 69, 508 (1946); RL Report No. 836, Oct. 26, 1945.

(71)

c =
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The real part of ¢ is the Langevin formula usually written in terms of the
mobility. The imaginary part corresponds to a change in dielectric
constant that is independent of w. For high frequencies, w? > mi2/2kT,

_16 &n (kT * _.etn (72)
T 3 melt\Zrm) T T ma’ ¥

The imaginary portion of ¢ is the familiar expression for entirely free
electrons. Since o' is inversely proportional to « and ¢’ is inversely
proportional to w?, at sufficiently high frequencies ¢ = —j¢’’. The
effective dielectric constant ¢ — ¢’//w [see Eq. (59)] may be positive or
negative depending on whether n is small or large. The behavior of the
ionosphere may be explained in terms of these expressions. As the
altitude is increased, » increases, and there is a cutoff condition if ¢’ is
sufficiently small. From Egs. (63) and (72),

X = 2r = 2r \/{'L (73)

en

®

For this wavelength

Tf the losses, as represented by ¢’, cannot be neglected, the exact theory
must be utilized. No true cutoff phenomenon occurs, because energy is
lost in the medium.

A similar situation exists in the action of a gas-discharge switch (TR
switch) in a waveguide circuit. During the discharge proper the above
formula for ¢ does not hold, because ionizing collisions were neglected in
the derivation. However, during the period of recovery after a discharge
has taken place, the formula is valid. At microwave frequencies and
for the gas pressures used, ¢’’ 3> ¢’. The attenuation is therefore of the
nature of attenuation in a waveguide beyond cutoff.

11.10. Absorbing Materials for Microwave Radiation.—An interest-
ing example of the application of the principles discussed in this chapter
is afforded by certain materials that absorb electromagnetic radiation
without producing much reflection. Such materials were developed by
the Germans during the war for radar camouflage.! They were used
principally to cover the breathing tubes that extended above the surface
of the ocean from submerged submarines. Two principal varieties were
developed, one employing poorly conducting materials, the other using
lossy dielectric materials that have also a complex permeability.

An absorbing material of the first type consists of alternate layers of
dielectric and thin sheets of poorly conducting material. The structure

1G. G. Macfarlane, ‘“Radar Camouflage, Research and Development by the
Germans,” T. 1905, M /99, TRE, July 23, 1945.
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is shown schematically in Fig. 11-17. The dielectric material is a foam of
polymicrylehloride with the low value of 1.3 for ¢/¢o and a negligible loss
tangent. Each layer of dielectric is about 7 mm thick. The conducting
sheets, each about 0.1 mm thick, are made of paper impregnated with
lampblack. The whole structure is

glued together, and the outside is Dielectric spacers

coated with a thin layer of water- / / / \X\\
repellent wax.

L Tty 1] | ¥ LI o

The design of a reflectionless struc-
ture is equivalent to the problem of
matching from free space to a short £ Metal
circuit by means of a lossy transmis- C
sion line. It is obviously impossible |s.]lsmm|[sam||mm| s mm|lsmml|s mmjs mml~
to obtain a perfectly reflectionless Ll N L I
matching transformer, and an approx- \\\ / o
imation must be chosen = The approx- Conducting sheets
. . . Fia. 11-17.—Construction of absorbing
imation employEd here is to use a sheet containing conducting layers.
number of lumped elements to intro-
duce the loss instead of a continuous lossy line. The equivalent circuit
of the arrangement is shown in Fig. 11-18. The lossy line is made
to behave in the manner of an exponentially tapered line! by using sheets

- L=7a+b y
Loa e +“+“4J+“+‘Li
: .
Short
9 ~ circuit
i 61 G G G G, G, G |
Line of Line of admittance =1 J
admittance |/ eo/e

I16. 11-18.—Equivalent circuit of absorbing sheet in Fig. 11-17.

of conducting material whose surface resistivity varies by a constant
factor from one sheet to the next.
Table 11-2 gives the values of the resistivities of the conducting layers.

TaBLE 112.—SurFactE REestsTiviTiEs oF CONDUCTING SHEETS OF MULTILAYER

ABSORBER
Sheet number (from front
surface) .. o 1 2 3 4 5 6 7
Surface reSIStw1ty, ohms
per square. . .......... 30,000 | 14,000 { 6500 3000 { 1400 | 650 300
Equivalent conductance
relative to dielectricline.| 0.011 0.024 {0.051 | 0.110 | 0.24 | 0.51 | 1.10

Y J.*C. Slater, Microwave Transmission, McGraw-Hill, New York, 1942, Chap. 1,
p. 75.
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The behavior of the absorber may be easily calculated from the
equivalent circuit. Even without calculation the approximate action is
readily seen. At long wavelengths the absorber acts as a large inductive
suseeptance with a very small conductance. At shorter wavelengths the
conductance is larger and the susceptance smaller, and the admittance of
the combination traces out on an admittance diagram a spiral approach-
ing the center. The admittance makes one revolution on the diagram
each time the phase change through the absorber is 180°. When the

+05¢

Susceptance
(]

i " L L 1 L "

0 05 10 1.5

I T T | I L

Conductance.

Fie. 11-19.—Impedance chart for the absorbing sheet of Fig. 11-17. The wavelengths
are indicated on the curve.

spacing between the layers becomes an appreciable fraction of a wave-
length, the spiral expands until the conducting layers are a half wave-
length apart. At this frequency the conductances are short-circuited
by the metal surface, and the admittance is pure imaginary. This
behavior is illustrated in Fig. 11-19 where the points on the spiral are
labeled with the wavelength in centimeters. Figure 11-20 shows the
calculated reflection coeflicient as a function of wavelength. The actual
absorbers do not give as good results as calculated because of variations
in the various parameters in manufacture. The reflection coefficient was
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observed to have a variation of 5 to 10 per cent in the wavelength range
of 7 to 15 ecm.

A second variety of absorber, composed of a synthetic rubber impreg-
nated with iron powder, makes use of both dielectric and magnetic losses.
For uniform plane waves, the equations of Sec. 11-5 are considerably
simplified. The wave impedance may be written

Zy = wo—gu’ Wl —jtany) \/p’ cos ¢e—jL;“?
NG ¢(1 —jtan ¢) ¢ cos ¢

and depends, therefore, for loss angles that are not too large, essentially

15
5. 1 /]
£t 4
8 & /
S //
3= 5
1] \ 4
& N\ J //
. \ N

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wavelength in cm
F1G. 11:20.—Reflection coefficient of absorbing sheet.

on the difference { — ¢. The propagation constant from Eqs. (41)

becomes
. ey —J'L;r
Y =Ja e
coS ¢ COs {

which depends upon the sum of the loss angles. An efficient ferro-
magnetic absorber should have large and equal values of ¢ and ¢ and large
values of ¢ and u’ subject to the condition that u'/¢’ be nearly equal to
#0/ €o.

The construction of an absorber utilizing these principles is shown in
Fig. 11-21. The synthetic rubber is impregnated with iron powder,
prepared from iron carbonyl, of particle size less than 10z. The material
has a specific gravity of about 4. At a wavelength of 10 cm the dielectric
constant €'/e, is approximately 25, u'/uo varies from 3 to 4, tan ¢ is
approximately equal to tan ¢, and tan { and tan ¢ lie between 0.3 to 0.4.
The intrinsic impedance is therefore real but rather small, and a resonant
construction has been adopted to match into the absorbing material.
The waflle construction, at wavelengths long compared with the grid
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spacing, acts as a shunt inductance. A thin layer of low-loss dielectric
acts as a spacer between the rubber and the metal to be camouflaged.
The equivalent circuit of the absorber is shown in Fig. 11-22. The
resonant nature of the device indicates that it is effective only over a

Spacer

Metal

Iron-impregnated
rubber

i_d mm ;3 mm{/i__
1 mm

Fi1g. 11-21,—Absorbing sheet with resonant construction.

L, L,
- st Short
Grid— €, By € circuit
Y0= ' My -

Reflection coefficient][‘l in percent

0 1 ! ] 1 L 1 1 1
7 8 9 10 11 12 13 14 15
Wavelength in cm
Fig. 11-23.—Reflection coefficient of three samples of absorbing sheet of Fig. 11:21.

narrow frequency band. Some observations showing the effectiveness
of this material are shown in Fig. 11-23. Other materials with values of
v/1'/¢ more nearly equal to the impedance of free space can probably
be obtained. Experiments with iron oxide (Fe.Os y-phase) and mag-
nesium ferrite (MgOFe.03), both of which are ferromagnetic, show
promise in this direction.



CHAPTER 12

THE SYMMETRY OF WAVEGUIDE JUNCTIONS
By R. H. Dicke

In this chapter the properties of symmetrical junctions of two or more
transmssion lines will be investigated. As these junctions will be
assumed to be lossless, all the results found for lossless junctions (Chap.
5) will be assumed to apply here. In particular a junction will be repre-
sented by an impedance, admittance, or scattering matrix of a lossless
generalized waveguide junction. Terminal voltages and currents will
be normalized in such a way as to make the characteristic impedance of
all transmission lines unity.

R

(a) (b (©)

Symmetry about a single plane

) )]

(R)
Complete symmetry

F1e. 12-1.—~Junctions having reflection symmetries only. Symmetry of one or more planes.

12.1. Classes of Symmetsy.—A number of symmetrical junctions are
illustrated in Figs. 12-1 to 12-3, inclusive. It is evident that this col-
lection is by no means complete and that there is an unlimited number
of possible symmetrical junctions. Nearly all junctions of transmission

401
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lines encountered in practice have some sort of symmetry. Because of
symmetry, a junction may have rather unusual properties. This will
be brought out later when examples are discussed.

A symmetrical junction is characterized by the fact that it is left
unchanged by a symmetry operation. For example, in Fig. 12-2q
the symmetry operation is a rotation of the structure by 180° about the
symmetry axis. This operation turns the figure back into itself. The
junction is said to be “‘invariant’’ under this symmetry operation,

In Fig. 12-1 the junctions are characterized by their invariance under
reflection in one or more planes. When there are two and only two

/

§ TN

e =
Sy
(@) (b)
One axis Three axes

Symmetry about one or more axes

N
e
\?

(o)
Symmetry about a point, &n axis, Symmetry about a point
and a plane

Fic. 12-2.—Junctions having reflection symmetries only, continuation.

symmetry planes, they must intersect normally. Their intersection is a
symmetry axis, as may be seen by reflecting first in one plane and then in
another. This is an example of the interrelation between symmetry
operations. This matter will be discussed later in more detail.

Since space has no preferred directions, it is evident that there is
nothing unique about the choice of the z-, y-, and z-axes in Maxwell’s
electromagnetic equations. In fact, a rotation of the coordinate frame
and field quantity to a new position is an operation under which Maxwell’s
equations should be invariant. This rotation is again a symmetry
operation.

Although Maxwell’s equations are invariant under a symmetry
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operation, any given solution need not be. For instance, a wave moving
to the right can be transformed under a reflection into a wave moving to-
the left. However, a standing wave with the symmetry plane at a node
or loop is left unchanged by the reflection. Such a solution is said to be
invariant under the symmetry operation.

Symmetrical junctions will be investigated by looking for symmetrical
solutions of Maxwell’s equations that satisfy the boundary conditions of
the junction. Any solution can then be expressed as a linear combination

Four-fold symmetry axis

Three-fold symmetry axis

Frg. 12-3.—Higher-order symmetries.

of these symmetrical solutions. A detailed solution of the boundary-
value problem is outside the scope of this book.! Instead, general condi-
tions which result from symmetry will be investigated.

A useful method for obtaining the properties of symmetrical junc-
tions is found in the theory of eigenvalue equations. This theory
is developed sufficiently to make the subsequent treatment of special
problems intelligible. However, before the general theory is developed,
a simple special case will be considered as an illustration of the type of
problem to be considered.

12.2. Symmetry of the Thin.Iris.—An iris across a rectangular wave-
guide is a geometrical configuration with a single plane of symmetry and

%
/9
/
/
’
e
Z
/
|
’
’
/
kKo
/
/

Terminals Iris Terminals
(1) 2)
Fia. 12:4.—The thin iris.
represents one of the simplest examples of a symmetrical junction. Such
a junction is represented in Fig. 12-4. Let terminal planes be chosen as
indicated in the figure. The region between the two terminal planes

1J. Schwinger has treated these aspects of many of the problems in detail. This
work is as yet unpublished.
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may be regarded as a part of the lossless junction, and an impedance
matrix Z (pure imaginary) may be defined such that

e1 = Zyd; + Z12i2, (1)
ey = Zagyiy + Zaota.

where the e’s and 7’s are the currents and voltages at the junction.

The first observation that can be made from symmetry is that
Zy2 = Z1,. This is evident because a reflection of the waveguide through
the plane of symmetry leaves the guide unchanged. However, this
reflection interchanges the field quantities at terminals (1) and (2).
Thus an interchange of (1) and (2) in the elements of the impedance matrix
should leave it unchanged. This is possible only if

Zyy = Zzl,
Zzz = Zu- (2)

The first of conditions (2) will be recognized as the usual impedance-
matrix symmetry condition and is valid independently of the existence of
geometrical symmetry. The second condition is imposed by the geo-
metrical symmetry.

Equation (1) is valid for any choice of 7, and 7;. In particular, it

holds for 72 = —7;. If this substitution is made in Eq. (1),
e1 = 1.(Z1 — Z1),
e = 12(Z1 — Zys), (3)
€ = —é€.

For this particular antisymmetrical solution the impedance seen iooking
into terminals (1) or (2) is

i1
Z=e~l=£=Zu—Z12. (4)
If e; = —e,, the electric field at the terminals (1) is opposite in sign to

that at the terminals (2). It is easily seen that this solution of Maxwell’s
equations has an electric field which is an odd function of position along
the axis of the guide (see Fig. 12-5).
R E 1 Note that the field becomes zero
i J'l t Yraladld ], ! ! at the symmetry plane; and since
M )] the iris is thin and effectively
Fia. 12-5.—Field .distribut.ion for antisym- embedded in this p]ane’ the field
metrical solution. P . .

distribution is exactly the same

as though the symmetry plane had become an electric wall.
A} the field distribution is that which would be produced by a metal
wall at the symmetry plane, the impedance Z is that of a short circuit
transformed down the line a half wavelength; that is, Z = 0. Therefore.
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from Eq. (4), Z1» = Z1,. This is just the condition that the iris be a
shunt susceptance at the symmetry plane. Perhaps the easiest way to
see this is from the T-equivalent of the impedance Eq. (1) (see Chap. 4).
If Z,, = Zs» = Zy3, the circuit becomes a pure shunt element of imped-
ance Z; across the junction.

The odd distribution in electric field of Fig. 12-5 is one symmetrical
solution of Maxwell’s equations. It is evident that the even solution is
another.

€1 = €

)
—1 = 2212. (5)
€1
1.1 = iz,
These are the only two solutions which are symmetrical about the sym-

metry plane. It is evident that any other solution of Eq. (1) can be
obtained as a linear combination of the solutions given in Eqgs. (5) and (3).

MATRIX ALGEBRA

12.3. The Eigenvalue Problem.—The problem just considered was so
simple that it could be seen by inspection that an odd or even distribution
of fields about the symmetry plane was a symmetrical solution of Max-
well’s equations. In more complicated cases involving many waveguides
in complicated configurations the intuitive approach may not be sufficient
to obtain a correct solution. Tt is the purpose of the next sections to
develop formal methods that are applicable to these more complicated
cases.

A formalism that is useful in the discussion of symmetrical junctions
is that provided by the theory of the eigenvalue equations. This theory
is developed here only to the point actually needed in the subsequent
problems. A more complete treatment can be found in any of the stand-
ard works on matrix algebra. There are also introductory treatments
for the reader unfamiliar with this field.! ]

The Eigenvalue Equations.—For a square matrix P, a column vector a,
and a number p, the equation

Pa = pa, (6

is called an eigenvalue equation. The quantity p is called an eigen-
value, and a an eigenvector. As an example of an eigenvalue equation,
with reference to Eq. (4), Eq. (3) may be written as

Zi = zi, (7

! Birkhoff and MacLane, 4 Survey of Modern Algebra, Macmillan, New York,
1941; H. Margenau and G. M. Murphy, The Mathematics of Phusics and Chemistry,
Van Nostrand, New York, 1943
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i=z‘l[_}]- )

Equation (6) can be satisfied only for certain discrete values of p.
To see this, Eq. (6) may be written as
(P —pha =0, 9)

where | is the unit matrix. Equation (9) is a homogeneous set of n
equations in n unknowns and has a nonvanishing solution for a only if the
determinant of the coefficient vanishes,!

det (P — pl) = 0. (10)

where

By expansion of this determinant, a polynomial in p of degree n is
obtained. This polynomial, called the characteristic polynomial, has n
roots, some of which may be equal. When m of these roots are equal,
the eigenvalue is said to have a degeneracy of order m. Equation (10)
is called the characteristic equation of P.

Nondegenerate Eigenvalues—The vectors a; . . . a, are said to be
linearily independent if for numbers ¢; there is no solution of the equation

zc,-a,-=0 (]])

J

other than the trivial one, ¢; = 0 for all j.

Theorem 1.—The n eigenvectors of P corresponding to the n non-
degenerate eigenvalues are linearily independent. Let the eigenvalue
equation be

Pa; = p;a;, (12)

where the n eigenvalues p; are all different. Let

2 08, = 0. (13)
Multiply Eqg. (13) by

(P = pa)(P — psl) « - - (P = pal). (14)
From Eq. (12) the result is
ci(pr — p)(p1— p3) - - - (py — pn)ay = 0. (15)

All other terms in the sum vanish. Equation (15) can be satisfied only
by ¢, = 0. In asimilar way each of the other ¢’s can be shown to vanish,
and the n eigenvectors are linearily independent.

! Margenau and Murphy, op. ¢it., Chap. 10, p. 299.
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There can be no more than n linearily independent n-dimensional
vectors. To show this let a, be any n-dimensional vector. Then the
cquation

n

E c;a; =0 (16)

i=0

must have a nonvanishing solution for ¢;, since it consists of n equations
in # 4+ 1 unknowns. Also in such a nontrivial solution ¢, = 0; for if
¢ = 0, all the ¢'s must vanish.

Theorem 2.—Any n-dimensional vector may be expressed as a linear
combination of n linearily independent vectors,

n

a, = z b;a;. (17)

Jj=1
The proof of this theorem is immediately evident if Kq. (16) is divided
through by ¢,.

From Theorems 1 and 2 it can be seen that there is only one linearly
independent eigenvector for each eigenvalue of P.  Any other eigenvector
can be obtained from this eigenvector by multiplying by a constant.

Degenerate Eigenvalues.—If m of the n roots of the characteristic
equation are equal, then there are m linearly independent eigenvectors

associated with this eigenvalue. An easy way to see this is to form the
matrix

P+eQ =T, (18)

where € is a number and Q is a matrix so chosen that T has no degeneracies.
Therefore Theorem 1 applies to T. In the limit, as e — 0, T — P and m
of the roots coalesce. The m eigenvectors associated with these roots
become associated with this degenerate eigenvalue. It is evident that
any linear combination of these m eigenvectors is also an eigenvector.
Hence by taking linear combinations of the eigenvectors a new set of
linearly independent eigenvectors can be ohtained. Therefore the basic
set of eigenvectors associated with a degenerate eigenvalue is not unique.
There is an infinite number of possible sets.

12-4. Symmetrical Matrices.—The transpose of a matrix is obtained
by changing rows into columns keeping the order the same. Note that
the transpose of a eolumn vector a is the row vector & The transpose
of the product of two matrices is

P-O=0 P (19)

Thix is casily seen from the definition of the product. A symmetrical
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matrix is by definition onz that is equal to its transpose. Symbolically,
P=PF - (20)

Two column vectors a; and a, are said to be orthogonal when
a4, = aa; = 0. (21)

Theorem 3.—1f P is symmetrical, the eigenvectors associated with
different eigenvalues are orthogonal to each other. Let

Pa, = p,-aj. (22)
Taking the transpose of Eq. (22) and changing the index,
LP = Pl = &P, ‘ (23)

Multiplying Eq. (23) on the right by a;, Eq. (22) on the left by &, and
subtracting,
(px — PH&a; = 0. (24)

If p. # p;, the two eigenvectors are orthogonal. If p; = px, then the
linearly independent eigenvectors need not be orthogonal. However,
it is possible to choose a set that is orthogonal. In fact this can be done
in an infinite number of ways.

Real Symmetrical Matrices.—A matrix is pure real or imaginary if all
its elements are pure real or imaginary.

Theorem 4.—1If P is real and symmetrical, all its eigenvalues are real
and the eigenvectors may be so chosen as to bereal. For if

Pa; = pa;, (25)
then
Pay = pfa, (26)
since
P = P*,
Also
ayP = piay, (27)
since
P=p.

Multiplying Eq. (27) on the right by a; and Eq. (25) on the left by &*
and subtracting,

(pf — p)aa; = 0. (28)

Since afa, is nonvanishing,
*

pi = P (29)

Thus all eigenvalues are pure real.  If Eq. (29) is substituted in Eq. (26).
it is seen that both a; and a¥ ave eigenvectors of the same eigenvalue.

st 2 R SN
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The eigenvectors with some eigenvalue p, may be divided into two
classes, those for which a, and a} are linearly independent and those
for which a, and af are linearly dependent. If a, and a} are linearly
dependent, then a, + a} is a real eigenvector. Ifa; and a} are linearly
independent, then a, 4 af and j(ax — a}) are linearly independent and
real eigenvectors. Thus it is always possible to pick a complete set of
real linearly independent eigenvectors.

Corollary.—The eigenvalues of a pure imaginary symmetrical matrix
are pure imaginary, and the eigenvectors may be so chosen as to be pure
real. An example of the corollary is afforded by the problem of the thin
iris.  The odd and even solutions of Eqs. (3) and (5) may be written

Za,’ = z/a”
where
L) e
a = 1) ay = 1
and
z; = 0, 2y = 271,.

It should be noted that z; and 2. are pure imaginary and a, and a. are
real and orthogonal.

12-5. Rational Matrix Functions, Definitions.—Any expression of the
form

f(P) = Co(P - Cll)(P - (',gl) .
(P =)' (P —cl)=t - - -, (30)
where the ¢’s are constants, is called a rational function of P.
Two wmatrices P and Q are said to commute if

PQ —QP = 0.
It can be shown easily that any two factors in Eq. (30) commute, and thus
the factors may be taken in any order.

Theorem 5.—If
Pa[ = P;a; (31)

then

J(P)a; = f(pya,, (32)
where f(P) is a rational function of P. This theorem is proved by adding
the identity c,la; = cxa;to Eq. (31), where ¢, is a constant,

(P + ci)a; = (p; + cv)a,. (33)
If Eq. (33) is multiplied by (P + ¢xl)~, the result is
(P + cih)~'a; = (p; + c)'a;. (34)

The product
f(PYa, = co(P —cid) =+ - (P — c_aD)a,
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may be evaluated by taking the product of a; by the last factor, then the
product by the second last factor and so on. The result is, using Eqs. (33)
and (34),

f(P)a, = f(p;)a;

An application of this theorem may be found ip the scattering and
impedance matrices that are connected by the equation

§=(Z—-N)Z+ ™ (35)
Therefore, if Za, = z;a;, then from Theorem 5
Sa]‘ = §;d;y
where
s = 2; — 1
! 2; + 1

The general result has been proved that the impedance, admittance and
scattering matrices have common eigenvectors. It should be noted that
since zf = —g;,

2; — lz,’-" -1 _

z,~+lz;-"+1—1'

s> =
12:6. Commuting Matrices.—An important theorem may be proved
regarding the eigenvectors of two matrices that commute.
Theorem 6.—If P and Q commute and Pa; = p,a;, where p; is non-
degenerate, then a; is an eigenvector of Q. To prove this theorem, it
should be noticed that

QPa; = p,Qa;

P{Qa)) = p;(Qa).

The vector Qa; is therefore an eigenvector of P corresponding to the
nondegenerate eigenvalue p;. Therefore Qa; can differ from a, at most
by a multiplicative constant, or

or

Qa; = ga,.

Hence a; is an eigenvector of Q. In a similar way it can be seen that if
p; is degenerate, Qa; is a linear combination of all the linearly inde-
pendent eigenvectors of this eigenvalue.

12-7. Cayley-Hamilton’s Theorem.—The characteristic equation of a
matrix was defined by Eq. (10) of Sec. 12-3.

Theorem 7.—Every matrix satisfies its characteristic equation. Ta
prove this, let the characteristic equation of P be

pn+c]pﬂ—1+ =0



Sec. 12:7] CAYLEY-HAMILTON'S THEOREM 411
and let the n roots of this equation be p,.  Form the matrix
M —_ Pn + CIPH—\ + PR + Cn.

Any nth-order vector can be expanded in terms of eigenvectors a; of P.

Let
a = 2 diag.

%
Then

Ma = Z di(pz + cpi™? - ¢+ 4 c)ag.
k ,
The expression in parentheses on the right of this equation vanishes.
Therefore

Ma = 0,

for any vector a. Therefore M = 0, and P satisfies its characteristic
equation, which proves the theorem.

The spur or trace of a matrix is defined as the sum of its diagonal
elements. The last theorem needed for the discussion to follow will now
be stated.

Theorem 8. —The spur of a matrix P 1s equal to the sum of its eigen-
values p. Let the characteristic equation of P be

pm +01p"‘1 + - - =0.

The sum of the roots of the polynomial is equal to ¢;. The characteristic
equation is the expansion of det (P — pl). In the expansion of the

determinant, the coefficient multiplying p»—'is E P,.. Therefore
n

21)1”1 = zpk-

n k

SYMMETRIES OF MAXWELL’S EQUATIONS

As pointed out earlier, the fact that there are no preferred directions
in space indicates that a particular choice of the x-, y-, and z-axes in
Maxwell’s equations is not unique. It should be possible to introduce a
rotation in the geometrical axes and a transformation in the field quan-
tities such that the new coordinates and field quantities satisfy Maxwell’s
equations. Insuch a case Maxwell’s equations are said to be “invariant”
under the transformation.

Rotations are not the only transformations that leave Maxwell’s
equations invariant. Reflections are also permissible transformations.
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Then again several transformations may be applied in succession. The
resulting transformation is also one under which Maxwell’s equations
are invariant. The general transformations will not be needed for the
examples to be discussed. The transformations that will be needed are
the reflections of various kinds and rotations about a single coordinate
axis by fractional parts of 360°. The reflections are the transformations
that will be required most often, and their theory will be developed in
detail.

12.8. The Symmetry of a Reflection in a Plane.—Under a reflection
in the yz-plane, z is transformed into —z, and the other space coordinates
are left unchanged.

oz = —z,
y—oy =y, (36)
202 =z

A transformation on the components of electric and magnetic field that
leaves Maxwell’s equations invariant is desired. One such transforma-
tion, as can be seen from the inspection of Maxwell’s equations, is

z—z = —z, E.,—> E,= —E,, H.—H.,=H,

y—y =+y, E,—E,=E, H,— H, = —H,,

22—z =z, E,—> E,=E, H,— H,= —H,,

w—w = w, 37
Jo—oJ, = —J,,
Jy—=Jy = Jy, p—p =p.
J.—oJ, = J,,

It is well to ponder the meaning of this invariance of Maxwell’s
equations under the transformation (37). Stated in words the trans-
formation replaces the electric field at the point z, y, 2 by that at the point
—z, ¥, 2, changing the sign of the z-component. The invariance of
Maxwell’s equations implies that this new field distribution is also a solu-
tion. Thus for any one solution, another can be obtained by applying
the transformation (37). It should be noted that in general this new
solution will not satisfy the original boundary conditions. Only when
the geometrical structure is invariant under the reflection does this new
transformed solution also satisfy the same boundary conditions as does
the old. In this case, any permissible solution can be transformed into
another permissible solution by the transformation (37).

Let us introduce a formal operator F, to represent the transformation
(37). F. will be thought of as an operator that can operate on any
coordinate to change it into its transformed value. For example,

F,-x = —z, }

F, E.(ry2w0) = —E.(~z,y,2w). (38)
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It 1s evident that

F.- (CE,) = C(F.- E.), (39)
where C is a constant. Also
F,-(x+y)=F, 2+ F.-y. (40)

An operator is said to be linear when conditions (39) and (40) are satisfied.

Information concerning general properties of the junction can often
be obtained by searching for solutions of Maxwell’s equations that are
invariant under the symmetry transformation. It is desired to find
solutions of Maxwell's equations that are left unchanged (except for a
possible change in phase) by the symmetry operator. A change in phase
can be compensated by a change in time zero, and such a change in solu-
tion is not significant.

If E, is a symmetrical solution, then

F.-E, = JE,, (41)

where f is a number with unit modulus. Equation (41) will be recognized
as a type of eigenvalue equation. Operating on Eq. (41) by Fq,

Fi-E, = JF. E, = f*E,. (42)

A reflection applied twice, however, leaves everything unchanged and
therefore

F2-E,=E, (43)
From Egs. (42) and (43),
Sr=1, ,
f=+1 (4

Solutions with f = 41 are even functions of z. If E, and E, are
even functions of x, the solution of Maxwell’s equation will be called
““even.” 1If f = —1 the solution will be called “odd.” Note that if
E, and E, are even functions of x, K, is odd, and conversely. The
symmetries of the even and odd solution are summarized in Table 12-1.

TaBLE 12:1.—EveN anNp Obb SoruTioNs orF MaxweLL's QUATIONS

Even 0Odd
E(zy,2) = —E:(—z,y2) E:(zy,2) = E:(—12,y,2)
E,(z,y,2) = E,(—zy,2) E,(zy,2) = —E,(—x,2)
E(zy,2) = E.(—1,y,2) E.(z,y,2) = —E.(—12,y,2)
Hi(zy2) = H:(—z2y,2) Ho(zyz) = —H.(—1,2)
Hy(zy,2) = —H,(—zy,2) H,(zy,2) = H,(—z.y,2)
H.(zy,2) = —H.(—z,y,2) H.zyz) = H—1.y.2)

If the solution is continuous across the symmetry plane, that is, if the
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symmetry plane does not contain a metallic sheet at the point in question,
then setting z = 0 in Table 12-1 yields

Even Odd

E, = 0, Eu = Oy
H, =0, E. =0, (45)
H, =0, H, =0.

Conditions (45) for the odd case are just the ones that must be satisfied
by the field quantities at the surface of an electric wall. In other words
the field distribution is the same as though the symmetry plane were
replaced by a perfectly conducting metallic film. In a similar way the
even solutions correspond to a magnetic wall at the symmetry plane.

12.9. Symmetry Operators.—Operators F, and F, can be introduced
in a similar manner to represent reflections in the zy- and the zz-planes.
All the above results follow exactly as for the operator F,. These reflec-
tion operators may be applied in combinations to the various coordinates.
For instance a reflection in the yz-plane followed by a reflection in the
xz-plane is equivalent to a reflection in the z-axis (or a rotation of 180°
about the z-axis). A new operator R, may be introduced to represent
this reflection in the z-axis. Formally,

R, = F.F, = F,F.. (46)
In a similar way
R, = F,F, = F.F,
R, = F.F. = F.F.. 7
Another symmetry operator is
P = F.F,F, (48)

This is a reflection in each of the coordinate planes and is equivalent to a
reflection in the origin. There is one other symmetry operator of impor-
tance in this set, namely, the identity operator. Let I represent the opera-
tor that leaves the coordinates unchanged. A multiplication table for
these operators can now be constructed. This is shown in Table 12-2.

TaBLE 12-2—MurtteLicaTioN TaBLE FOR THE REFLECTION GROUP

! R, R, RF. F, F. P
I R, R, R F. F, F, P
RiR. I R, R/P F, F, F.
RJ/R, R. I R.F. P. F. F,
R|R. R, R, I F, F, P F,
F\F, P F, F,I1 R, R, R.
F,F, F, P F,R.I R, R,
F.\F, F, F, PR, R. I R.
PP F, F, F..R., R, R. I
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It can be verified from the table that a 180° rotation about the z-axis
followed by a reflection in the yz-plane is equivalent to a reflection in the
wz-plane.  Symbolically,

F.R, = F,. (49)

These eight reflection operators together with their rules of multipli-
cation given in Table 12-2 are an example of a group. A group is a set
of elements with a law of multiplication such that for any three elements
of the group 4, B, and C,

1. A(BC) = (4AB)C.

2. There is an element I such that for any element 4, J4 = A.

3. For every element A there is an element A~! such that 44! = I.

It should be noted that for the reflection group every element com-
mutes with every other element. For example

F,R. = RF,.

A group all elements of which commute with one another is said to he
Abelian.  The elements I, R,, R,, and R, form a group called a subgroup
of the reflection group. The generators of a group are elements from
which any element of the group can be obtained as a product. The
elements F., F,, F. are generators of the reflection group. Another set
is R,, R,, and P.

Table 12:2 may be used to construct a table of symmetry types.
Each symmetry type is a subgroup of the reflection group. In Table
12:3, seven types of symmetry are listed. They are illustrated by the
waveguide structures of Figs. 12-1 to 12:3. To illustrate how this table
was constructed, notice that there is no symmetry with two symmetry
axes. From Table 12-3, two symmetry axes automatically require a
third.

TasLe 12:3.—SymMETRY TYPES UspER REFLECTION (GROUP

Number of symmetry elements Type of
_" € ()
I ] symmetry
Type Planes Axes ' Points
1 1 0 i 0} ,
2 , 1 ‘ 0 Planar
3 3 3 ‘ 1 (‘'omplete
{ 0 1 ! () .
3 0 3 [ l)} Axial
6 1 | i ! Mixed
7 0 0 " | Point

i i i i




416 THE SYMMETRY OF WAVEGUIDE JUNCTIONS [Skc. 1210

12.10. Field Distributions Invariant under Axial and Point Reflec-
tions.—In Table 12-2 it should be noted that R? = I and P? = [, so the
arguments that led to even and odd field distributions as the only solu-
tions of Maxwell’s equations invariant under reflection in a plane are
valid for reflection in an axis and a point.

The solutions with R, as the symmetry operator are given in Table
12-4.

TaABLE. 12-4.—S0LUTIONS SYMMETRICAL UNDER R,

Even 0Odd
E.(zy2) = —E:(—z,—y,2) E:(zy2) = E:(—z,—y,2)
Ey(z,y,2) = —E,(—z,—y,2) E,(z,y,2) = E,(—z,—y2)
El(zvyyz) = E;(—x,—y,z) E,(:l:,y,z) = —E,(—:c,—y,z)
HZ(Iiyyz) = —HZ(_xv_yyl) H,(J:,y,z) = HZ(_IV—Z/;Z)
Hy(z,y,2) = —H,(—z,—y,2) Hy(z,y,2) = Hy(~z,—yz)
Hy(z,y,2) = H.(-z,—y2) Hi(z,y,2) = —H.(—z,—y,2)

Along the symmetry axis (x = y = 0), therefore, the solutions are

Even Odd
E:(0,0,Z) = 0) E,(0,0,Z) = 0,
EV(O;())Z) = 0; Hz(0,0,Z) = (.
H.(0,0,2) = 0, (60)
H”(OYOIZ) = Oy

The solutions of Maxwell’s equations symmetrical under P are given
in Table 12-5.

TaBLE 12-5.—SOLUTIONS SYMMETRICAL UNDER P

Even 0Odd
E;(I,‘]/,Z) = El(_zy_yy_z) Ez(x)ylz) = —Ez(-zy—y)—z)
Eﬂ(Ixy,z) = Ev(_xy_yy_z) Eu(I;‘y,z) = —E,,(—I,—y,—z)
El(xyyyz) = E,(—I,—y, —Z) E,(z,y,z) = —E;(—I, _yy_z)
H.(z,y2) = —H:(—2,—-y,—2) H(zyz2) = Hi(zyz2)
HII (Iyyyz) = _Hll( -, Y, —2) HV(Iyy:z) = Hv(zyy)z)
Hi(zyz2) = —H.(—2,—y,—2) Hizyz) = Huzye)

At the origin, r = ¥ = z = 0, these solutions are characterized by the
vanishing of the field components, thus

Even 0Odd
H.(0,0,0) =0, E.(0,0,0) =0,
HV(O,O,O) = 0! EU(OIO!O) = Oy (51)
H,(0,0,0) = 0, E.(0,0,0) = 0.

The invariance of Maxwell’s equations under the reflection group has
been examined in some detail. These are not the only symmetry
operators which will be encountered, but other types of symmetry will
be discussed in connection with the particular problems to which they

——

[ VA
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apply. As an example of another type of symmetry, the problem of the
symmetrical H-plane Y-junction will be considered later.

WAVEGUIDE JUNCTIONS WITH TWO OR THREE ARMS

12-11. The Thick Iris.—The symmetry of the thick iris is the same
as that of the thin iris. The main reason for presenting this type of
problem again is to introduce with a simple illustration the formal
methods of solution. The junction is shown in Fig. 12-6. The iris may
have an aperture of any shape in a

v
metal plate of uniform thicknessd. T
The junection has a symmetry A A
plane through the iris, and all the I‘_ 2 t 2 *L

results of Sec. 122 apply to this %Li ,,:$ Lx I._ L B
problem. The junction is invari- e *'iH\J T]
ant under the reflection operator
F.; and to any solution of Max- z
well’s equations satisfying the Fi16. 12:6.—The thick iris.
boundary conditions imposed by the waveguide and iris, there is another
obtainable by operating with F, on the solution.

If e and i are the voltage and current vectors

<) -l
€y (2]
of the junction, then e; is a measure of E; at junction (1) and <, is a

measure of H, at junction (1). Under F,, which symbolizes the trans-
formation (37),

'
e — e = e

ey — €y = e:; } (52)

10 = 1,
. I .
12 —> 19 = 13.

(53)

The sign convention on the junction currents (into the network) results
in no sign reversal in Eq. (63). The reflection operator F, takes the form

0 1
F= [1 O] (54)

when operating on i and e. Thus,
Fi =1, Fe = e’. (55)

The transformation given in Eqgs. (52) and (63) may be made by per-
forming the matrix operation of Eq. (55). The matrix F is said to repre-
sent the operator F,.
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If the impedance matrix of the junction is Z, then

e = Zi. (56)
But the transformed voltages and currents also satisfy Eq. (56)
e =12i,
Fe = ZFi,
FZi = ZFi, (57)
(FZ — ZF)i = 0.
Equation (57) is valid for any current vector i. Hence
FZ — ZF = 0. (58)

Equation (58) is important. It iS a direct link between the symmetry
operator F and the impedance matrix.

The only solutions invariant under F, are the ‘“‘even’” and ‘“‘odd”
solutions (Table (12-1). For these solutions \

$

Even 0Odd
ey = ey, b= " (59)
'il = 7:2, 1:} = —’ig.

Conditions (59) can also be obtained from the eigenvalue equation
Fa = fa. (60)
The characteristic equation is [see Eq. (10), Sec. 12-3]

R S
det[1 f] = f 1 =0.

The eigenvalues are

fi=+1, fi=-L (61)

[See also Eq. (44)].
Eigenvectors of Eq. (61) can be found by inspection and can be written

a = —= (! A
Tvaly) BT Vvel-)
Note that a, and a, are linearly independent (Theorem 1), orthogonal
(Theorem 3), and pure real (Theorem 4) and are normalized to unity.

From Eq. (58) and Theorem 6, a; and a, are also eigenvectors of Z.
Thus the eigenvalue equations of Z can be written as

Za, = zaz; (62)

2, is pure imaginary (corollary, Theorem 4).
From Theorem 5, a; and 4, are also eigenvectors of Y and S,

e
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As was discussed previously (Sec. 12-8) the even and odd solutions

-are those for which the symmetry plane becomes a magnetic and an

electric wall respectively. Figure 12-7 is a cross section of Fig. 12-6 for
these two cases, showing one side :

only. fﬂmmwzzé\
| Electric wall

Nothing very much can be said Even a Z,-4~
i

about the eigenvalue z; for the even Magnetic wall
case without a solution of the bound- g 0 Ve d
ary-value problem. However, it is Terminals 2

clear that the obstacle for the odd

case will reflect in such a way thatan Electric wall

. A |
effective short circuit lies somewhere 0dd @ Z, 4+

between the symmetry plane and the g

left side of the iris. The eigenvalue oM _/ 2

z, will be capacitive, because the Ef;t;csta/:npg;g:ﬁ:

short circuit lies between one-quarter Fie. 12-7— Boundary conditions for
and one-half guide \Vave]ength from symmetrical BI.ld 'ar_ltisymmetrical solu-
the terminals. If the thickness of 1oms for the thickiris

the iris, d, is small compared with the guide wavelength X,, then

, d
0<jza<m )\—a
The impedance matrix can be written down directly in terms of z; and z..

However, it may be obtained formally by the following procedure.
Equation (62) may be combined to form the single equation

ZA = AZ,, (63)
where
1 (1 1
A = —=
V2 [1 —1]’
_ 21 0
Zd - 0 22]'

Note that A has a, and a; as columns. The matrix A has columns that
are orthogonal and normalized to unity. Such a matrix is said to be
orthogonal. It has the property that

A=At "

The fact that A is symmetrical is not very significant. If 2, and 2, were
interchanged, the new A would not be symmetrical. From Eq. (63),

Z = AZdA_1 = AZdA.
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If this equation is multiplied out,

(z1 + 22) (21 — 25)
Z=13 (64)

(21 — 29) (21 + 29) .

If a T-section equivalent is made for Eq. (64), it takes the form of Fig.
12-8.

o1 i .
{ °
v A
Yolz1~-25)
G; —)

. d
O0<jz, <™ ™
Fia. 12-8.—Equivalent circuit of a thick iris.

12.12. The Symmetrical Y-junction.—Figure 12-9 shows an H-plane
symmetrical Y, and Fig. 12-10 is a diagram to illustrate its symmetries.
There are three symmetry planes Fy, Fs, and ¥ intersecting in a threefold
symmetry axis. The structure is invariant under rotations of 120°
and 240° about the symmetry axis.

Fig. 12-9.—H-plane Y-junction. Fig. 12-10.—Symmetries of the H-plane
Y-junction.

The symmetries illustrated in Fig. 1210 are not the only ones. The
plane containing the axes of #he three guides is a symmetry plane, and
the intersection of this plane with the other planes (that is, the z-axes of
the guides) are symmetry axes. However, these symmetries do not play
an important role in the properties of the Y-junction. In fact, these
extraneous symmetries will later be removed by placing a post, along the
three-fold axis, that does not extend completely across the guide.

R
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The unit operator together with R,, Rs, Fy, Fs, and F; form a group
whose multiplication table is Table 12:6. It should be emphasized that

TaBLE 12-6.—SyMMETRY GROUP

I R, R,F, F, F,
Il R, RF, F, F,
RIR, R, I EFz F, F,
R)R, I RiF;, F. F,
FF. Fy Fil R, R
Fof; Fi FiR, I R,
FyFy F. F/R, R, I

this table states that, for example,
FaFl = Rl.

Stated in words, a reflection in the plane F, (Fig. 12-10) followed by a
reflection in Fj is equivalent to the rotation R;.
Note that
F;F, = F\F,

and the group is noncommutative. The operators |, R;, and R, form an
Abelian subgroup.

Note that any element of the group may be generated as a product of
one or more terms in R; and F,. For instance,

F; = KR (65)

Therefore R; and F, are generators of the group.

The rotation R; rotates the junection by 120°. The currents and
voltages at a terminal plane become replaced by those at another ter-
minal. We shall always use the convention that the terminal number
is fixed in space but that the structure itself is transformed. Thus the
currents and voltages at terminal 1 are replaced by those at terminal 3.
Let

0 0 1
R.=11 0 0}- (66)
010
Then the terminal currents and voltages i and e are transformed into
Rli = i,,
Rle = e'. (67)

This may be compared with the result given in Eq. (55).
Since the transformed currents and voltages are permissible solu-
tions, one obtains in the usual way [see Eq. (58), for example]

RZ — ZR, = 0, (68)
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with similar relations for the admittance and scattering matrices. In a
similar way a matrix may be introduced to represent each of the other
symmetry operators. However, for reasons that will be indicated below,
it is necessary to introduce a matrix for only one more such operator,
namely, F,, the remaining generator of the group. Let

1 00
F,.=10 o 1. (69)
01 0

Note that Eq. (69) interchanges fields at terminals 2 and 3 without
affecting terminals 1. The impedance matrix must also commute with
that given in Eq. (69) because of the symmetry of the junction. Thus

The commutation of the generators R, and F; with the impedance,

admittance, or scattering matrix automatically guarantees the commuta-
tion @f every symmetry matrix. To see this, note that from Eq. (68),

R:Z = R.ZR, = ZR? (71)
and
F.R!Z = F,ZR? = ZF,Ri. (72)
From Eqgs. (72) and (65),
FsZ — ZF; = 0. (73)

In a similar way each of the symmetry operators can be shown to com-
mute with Z.

Note that the commutation relation [Eq. (73)] is the only connection
between the impedance and symmetry operators. Thus if the generators
of the symmetry group commute with Z, then every symmetry operation
commutes and all the conditions that symmetry imposes on Z are fulfilled.

The Etigenvalue Problem.—Introduce the eigenvalue equation for
Ri,

Rla]- = Tdje (74)
From Table 12-6 it can be seen that
R: = I (75)

physically, it is clear that three rotations of 120° return the figure to
its initial position. Combining Eqs. (74) and (75),
R?a]' = |a]- = rg-a,-.
Thus
=1 (76)
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Let,
Ty = 1,
1, V3
mTTaty T 7
1 _v3_
T3 = § 2] = .

The three eigenvalues of R are all different and therefore nondegenerate.
The three eigenvectors of R; can be found by inspection (remembering
that a? = ag, 0§ = a1, 1o = 1).

Let

1

a;=|1],
Ll
1

az = |az|, (78)
an
1

az = |ai|.
(24

Since R; commutes with Z, Y, and S, the eigenvectors given in Eqs. (78)
are, by Theorem 6, eigenvectors of Z,Y,and S. Thus, for instance,

Zak = Zrdx. (79)

By Theorem 4 it must be possible to choose eigenvectors of Z that are
pure real. This is possible only if 2 = z;. This can be seen in another
way. Operating on Eq. (79) with Fy, remembering Eq. (70),

Z(F.a) = z(Fiay).

Thus F,a; is an eigenvector of z;.

But
Fia; = a;
Fia; = a,.
Therefore
2y = 23

By taking &, and linear combinations of a, and as, three linearly inde-
pendent, orthogonal, real eigenvectors can be obtained. Let

b, = ay,

b, =a as,

2 21+ 3 (80)
by = \/gj(a‘z — ai).




424 THE SYMMETRY OF WAVEGUIDE JUNCTIONS [Sec. 12-12

Note that bs and b; are eigenvectors of Z. Also,

F1b1 = bl)
Fib, = b, (81)
F1b3 = '—‘ba.

Thus the b;’s are simultaneously eigenvectors of Z and F;. By Theorem
3, since Z and F, are symmetric, by, by, and bs are mutually orthogonal.
By Theorem 4, by, bz, and b; must be, except for a possible multiplicative
constant, pure real,

b1= 1 y
1
2
by = | —1], (82)
—1
0
b3= 1 .
~1

It can be seen by inspection that the b’s are real, orthogonal, and linearly
independent.

By Theorem 5 (see example at end) the a’s and b’s are also eigenvec-
tors of S and Y. Let

Sa; = s;a;, Ya; = y;a;,
where

sl =1, y=gt

Field Distribution.—Note that the eigensolutions always have stand-
ing waves in all of the joining waveguides, since |s,] = 1. However, in
connecting guides that are part of the junction or in the interior of the
junction, there may be running waves. As an example of this a, and
as, as can be seen by inspection, are solutions with a different time phase
at each of the junctions. In the case of &, the voltage is 2 maximum
first at terminals (1), then (2), then (3). In the vicinity of the symmetry
axis the electromagnetic field rotates about the axis once per cycle. The
solution a; is the same except for the opposite direction of rotation.
These solutions might be called three-phase solutions because they are
analagous to the types of field distributions obtained in three-phase a-¢
machinery.

Since these rotating fields have a time phase that varies with the angle
of rotation, the components of E and H parallel to the symmetry axis
must vanish along that axis [see Eq. (50) for the analogous twofold
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symmetry axis]. Since the other components of E vanish anyway, E
must completely vanish along the symmetry axis.

The field distributions for b;, by, and b; can be easily obtained. It
is to be noted that from Eq. (80), by is an eigenvector of F, for which the
eigenvalue is +1. It is also an eigenvector of F; and of Fs. For all
three reflection operators the solution b; is an even solution, and therefore
the field distribution is characterized by a magnetic wall along each of

Magnetic

i Electric wall
walls '(Magnetic waﬂl

e — :

/ |
K ——p——— I

7 ) (1)

/ \ 1) P - ~ 4
@) &
Solution b, Solution b, Solution by

Fia. 12-11.—Boundary conditions for the various eigensolutions.

the symmetry planes. Thus arm (1) is terminated in a V-shaped
magnetic wall. The solutions b, and b; are eigensolutions of F;, even
and odd respectively, and are therefore characterized by a magnetic
and an electric wall in the symmetry plane (see Fig. 12-11).

The Scattering Matriz.—The eigenvalue equations

Sbi, = -S‘kb;c,

where the eigenvectors b} are the b’s normalized to unity,

1 2
1 1 1
b= 1], m= -1l wm= |,
! \/§1 2 \/6 1 s \/2 _

can be written

SB = BS,,
[see Eq. (63)] where
o2
V3 V6
B- | -1 1
V3 Ve V2
BRI S
Vi Ve VR
and
st 0 0
S¢e=10 s O
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The matrix B is orthogonal. Hence,

S = BS.,B. (83)
If S is multiplied out, there is obtained
a B p
S = B a B » (84)
B B a
where
a = §(s1 + 2sy),
8 = $(s1 — ). (85)

Equation (84) also gives the impedance and admittance matrices Z and Y,
provided that in Eqgs. (85) s; is replaced by z; and y; respectively, where

=1+Sj y‘=1—s,-- (86)

ATy YT IiEs

Note that the sum of the diagonal elements, or spur, of the matrix given
by Eq. (84) is equal to the sum of the eigenvalues (Theorem 8).

Power Division.—A junction is said to be matched when all the
diagonal elements in the scattering matrix are zero. Clearly a necessary
condition for a matched junction is that the sum of all eigenvalues of S be
zero. In Eqgs. (85) the phases of s, and s, can never be of such values
that « = 0. Hence the symmetrical Y-junction can never be matched.

This property is much more general than appears above. In fact
no junction of three transmission lines can be matched. To show this,
assume that such a junction has been matched. Its scattering matrix is

0 S12 S
S = Sz O Sas)- (87)
S31 S32 O

But S is unitary and symmetrical ; the product of any column by the com-
plex and conjugate of any other column is therefore zero. If the first
column is multiplied by the complex conjugate of the second, the result is

S:nS;z = 0.
In a similar way the other two products give
SmST; = 0, S21S2*3 = 0.

These three equations cannot be satisfied unless two of the three
quantities Sis, S2s, Si3 are zero. But in this case there is a column of
the matrix that is zero. This is impossible, since the product of every
column by the complex conjugate of itself is unity. Thus it is impossible
to match a T-junction or any other junction of three guides.
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It is to be noted that the best match which can be ebtained with the
symmetrical Y-junction is when

$1 = —8a. (88)

In this case the scattering matrix of Eq. (84) becomes

-1 2 2
S=4%s1] 2 -1 21 (89)
2 2 -1

With two of the waveguides terminated 'in their characteristic imped-
ances, eight-ninths of the power entering the third arm goes into these
terminating loads. The remaining ninth is reflected back to the genera-
tor. In order to satisfy the condition (88), it is necessary to adjust the
phases of s; and s, relative to each other. One way in which this can be
done is to insert a pin in the guide along the symmetry axis. It will be
remembered that the electric field is zero along the axis for the modes
whose eigenvalue is s,. The pin does not affect these modes at all. The
electric field is a maximum at this point for the eigenvector a, with the
eigenvalue s;. Hence as the pin is extended across the guide, the phase
of s; would be expected to change without altering s;. It does not neces-
sarily follow that by such an adjustment, the phase of s; can be made to
have any desired value, but it is to be expected that a sizable variation
can be obtained in this way.

12-13. Experimental Determination of s; and s,.—If plungers are
inserted in two of the arms in symmetrical positions, then power entering
the third arm will set up standing waves in the system. The plungers
are adjusted until the nodal points come in the same place in each of the
three arms; then the position of the nodal point is measured. The
phase determined in this way is the phase of one of the eigenvalues.

The procedure just outlined is correct in principle but would be very
difficult in practice. A procedure that involves a single plunger is much
better in many ways. It is to be noticed that the eigenvector b; has no
fields in one of the arms. If there are no fields, the plunger can be omitted
in thisarm. Infact, the condition of no power in this arm is a convenient
test for determining when the remaining plunger is in the correct position.
To see this algebraically, let a plunger be placed in arm (3) of the Y-junc-
tion and let a matched load terminate arm (1). Then the scattering
equation is

where

(90)
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and ¢ depends upon the position of the plunger. If it is assumed that
the reflection coefficient in arm (2) is s,, then

as82 = ba. (91)
Combining Eqgs. (90) and (91), using the notation of Eq. (84),
by = Ba: + Bas, (92)
e L o] )
Equations (93) have a solution only if
(@ — s3) B
= 0. (94)
B (a — &%)
Solving Eq. (94) for ¢¢ using Eq. (84),
e = g, (95)

Thus if the reflection coefficient in arm (2) is s;, the plunger is in such a
position that Eq. (95) holds. The ratio of a, to a; is the ratio of the
minors of a column of the determinant in Eq. (94).

Substituting in Eq. (92),

Under these conditions, therefore, no power enters the load on arm (1).
Conversely, if the plunger is adjusted until no power enters arm (1),
then s, is given by relation (95).

The determination of s; is the next step. One way in which it can be
determined is to measure o by measuring the reflection coefficient atone
of the arms with the other arms matched. Then, making use of Eqs.
(85), s: can be determined. Another method, which is capable of greater
accuracy, will now be outlined.

1t is to be noted that the eigenvector bz is odd with respect to F but
that b; and b; are even. The eigenvectors b; and b, have different eigen-
values with respect to S, and the positions of nodes are therefore different
for by and b;. A linear combination of b, and b, with the same time phase
is a new standing-wave solution. However, the nodes occur at different
places. In particular, by taking the right combination, the nodes in
arms (2) and (3) can be made to occur $\, away from the nodes of b;. A
linear combination of this standing-wave solution with b;, since the time
phase of b; is in quadrature and its amplitude is equal to the other solu-

e R Al i o o st et 1 i @
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tion, can be made such that there are pure running waves in arms (2)
and (3).

To recapitulate, there is a solution that corresponds to running waves
in arms (2) and (3) and a standing wave in (1). This solution can be set
up by a plunger in arm (1). The position-of this plunger-can be adjustec
until there is no reflection by the Y-junction. The position of the plunger
is then an accurate measure of a combination of s; and s.. Since s,
is known accurately, s; can be determined.

It will now be shown that the linear combination

S — &

2s9(81 + s2)

s a set of incident waves which results in pure running waves in arms (2)
and (3). The components of Eq. (96) are, from Eqgs. (82),

g = b, + 23 b, + bs (96)

81+82

25+ s
g = 82(81 + 82)’

_ 8 — &
2= G F s0)
gs = 0.

Thus this solution corresponds to waves incident upon the junction from
arms (1) and (2). After scattering by the junction, the waves are given
by

h = Sg,
where

s —_—
h b1+2—;b2+8—2(82——)b3,

=_ 5
sy + 82 2s9(s1 + s2)

since b, bs, and bs are eigenvectors with eigenvalues s;, s;, and s;. The
components of h are
hy = 281+ 82 _ 251+ & sag1
81+ 82 255 + st

hz = 0,
= §1 — 82 = —
ha $1 + 82 Sz

1t should be noted that h, = 0 and there is no reflected wave in arm (2).
In other words, power enters by arms (1) and (2} and leaves by arms (1)
and (3). It should be noticed also that,

[Pa] = lgil.

Thus there is a pure standing wave in arm (1). If this standing wave is
set up by a plunger in the correct position, the position of this plunger is a
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measure of the eigenvalues of S. If a plunger in arm (1) is in such a
position that its reflection coefficient is

1 283 + &1

S —281-}-82, (97)

. g1
i¢ = Y- =
€ hl

thep power is matched through the Y-junction. In practice the Y-junc-
tion might be measured on an impedance bridge to obtain an adjustment
of this plunger for which Eq. (97) holds. Since s; is known from other
measurements, Eq. (97) can be solved for s, in terms of ¢/¢ and s,.

To recapitulate, it is found that for a plunger in one of the arms of the
Y-junction, there is one position for which there is no coupling between
the remaining two arms and there is another position for which the power
is matched through the Y-junction without reflection. Both of these
conditions are more general than appears here. Consider the second
part: The symmetry of the Y-junction can be partially removed by includ-
ing, as part of the Y-junction, a transformer in arm (1). The resulting
junction has only a single plane of symmetry, namely, the plane including
arm (1). However, this arm backed up by a plunger is still effectively
a pure reactance. There is now a new position of the plunger for which
power is matched through the Y-junction. A three-armed junction
with a single plane of symmetry is usually called a T-junction. Thus
power can be matched through a T-junction by means of a plunger placed
at the proper position in the symmetry arm.

A property of all three-armed junctions, symmetrical or not, concerns
the stopping of transmitted power. Let us consider a plunger to be
placed in one of the arms in such a position that there is no coupling
between the two remaining arms. If transformers are inserted in these
arms, there will still be no coupling but the symmetry has been completely
destroyed. Thus we have the result that for any junction of three trans-
mission lines, there is a position of a plunger in any arm for which the
remaining two arms are decoupled.

12.14. Symmetrical T-junctions.—Figure 12-12 is an illustration of
three different types of symmetrical T-junctions. Two of the T-junc-
tions have a single symmetry plane; the third has an axis of symmetry.
It should be noted that the series T-junction is a special case of the axial
T-junction.

The terminal planes in each of the arms are illustrated and numbered
in the figure. The reflection operator applied to the shunt T-junction
has the form

010
F=1(1 0 0f. (98)
0 0 1
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Since F commutes with the scattering matrix,
S = FSF-! = FSF. (99)
If Eq. (98) is substituted in Eq. (99) and the matrix produect performed,

the elements of S must satisfy

S = S22
! 100
S13 = Sas. ( )

In a similar way the reflection operator applied to the series T-junc-
tion takes the form

0 1 0
F=]1 0 0].
0 —1}

The rotation operator applied to the axial T-junction takes the form

0 1 0
R=|1 0 0].
0 0 -1

Thus the rotation operator is quite equivalent to the reflection §
operator applied to the series T-junction, and the properties of the axial

2R

(a) Series (c) Axial
Fia. 12:12.—Symmetrical T-junction.

T-junction will be essentially the same as those of the series T-junction.
Note that

RSR = S.
This condition leads to
Su = Szz,
Sla = —S23-

These relations, except for the change of sign, are the same as Eqs. (100).
For this reason the properties of all the T-junctions will be very similar.
In order to avoid duplication, only the shunt T-junction will be discussed
in detail.
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12:16. The Shunt T-junction.—The symmetry operator of the
shunt T-junction is the reflection operator given in Eq. (98). The
eigenvalue equation of F is

Fak = fkak.
Since
Fz =1,
the only eigenvalues are +1. If the characteristic equation of F,
det (F — f1) = 0,
is solved, the roots are
fi=+1, fa=+1, fs=—1

Thus there are two positive eigenvalues and one negative. The negative
eigenvalue is nondegenerate; its eigenvector is therefore unique, except
for the usual multiplicative constant. The eigenvectors of the degenerate
positive eigenvalue are not unique, but the following set of eigenvectors
are orthogonal and real:

1 1 1

a; = 114, ag = az = | —1].
2

I

—4/2 0

Let the eigenvalue equation for the scattering matrix of a shunt
T-junction be

Sb;‘ = Sibj.

It must be assumed that the three eigenvalues of S are unequal unless
there is some symmetry operator that requires equality. Since S and F
commute, the b’s are also eigenvectors of F (Theorem 6). Thus b, must
be a linear combination of a; and a,,

1
1 .
V2
Note that a is real by Theorem 4. By Theorem 3, b, must have the form

1
1

Ve

b1=

b, =

By Theorem 6, by = a;. The form of the b’s is not particularly simple,
because the positions of the reference planes in the arms 1, 2, and 3 have
been chosen in an arbitrary way. We shall now indicate how these planes
may be chosen so that o = 1.
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As was pointed out previously, eigensolutions are always standing-
wave solutions. A linear combination of two standing-wave solutions
with equal time phase is again a standing-wave solution. It is desired to
take a linear combination of b, and b, to produce a standing-wave solu-
tion in which the amplitude of the wave in guide (3) is /2 times that in
guides (1) and (2). This is always possible, and we shall assume, without
going into details, that it has been done. New reference planes are now
chosen to occur at the voltage loops in guides (1), (2), and (3). The
reference planes in (1) and (2) are, of course, symmetrically placed. The
standing-wave solution obtained is, with respect to these new reference
planes, an eigensolution with voltage loops at the reference planes. Its
eigenvalue is clearly

Its eigenvector may be either
1
a = 1

V2

or the same thing with the opposite sign for the third element. It is
always possible to choose the original linear combination in such a way
that a, is the correct eigenvector. A comparison with b, shows that
a = 1. Thus for these new reference planes,

Saj = §;d;,

where s; = 1. The eigenvectors a; may be combined to form an ortho-
gonal matrix

1 1 V2
A=z 1 1 —4/2|. (101)
V2 -2 0
Then
SA = ASd,
where
81 0
Sd = [0 Sg 0
0 0 83
From Eq. (101)
S = AS/A (102)

If the product on the right of Eq. (102) is formed, the result is

a & ¥
S=1[s a ~|, (103)
Yy v B



434 THE SYMMETRY OF WAVEGUIDE JUNCTIONS [SEc. 12:15

where
o = i’(]. + Sg + 26‘3),
18 = %(1 + 82))
2 104)
Y = —\i— (1 - S2)v (
8 = (1 4 5o — 2s3).
Note that

2‘1+5=1+82+83

as it should (Theorem 8).
It will be remembered that it is impossible to match a T-junction.
As a check on this, for a matched T-junction,

a=8=0.

This is clearly impossible as an inspection of Eqgs. (104) will show.
It will now be shown that if @ = 0, the trivial case for which guide
(3) is completely decoupled is obtained. If

a =0,
then
g = —83 = 1. (105)

Substituting Eq. (105) in Eq. (104),

o R W R
—_o o

This result is more general, applying to unsymmetrical junctions as well.
To see this let the scattering matrix be

0 Sa S
S = Se1 0 Ssal -
Ss1 Sz Sss

Since S is unitary, the product of the first column by the complex conju-
gate of the second vanishes;

S38% = 0.
Either S31 or S3; must vanish. In either case,
[Sa1| = 1,

since the square of each column must be unity. Then

Ss = 83 = 0,
|S21[ = |Saal = 1.




Sec. 12-16] USE OF A T-JUNCTION IN A TUNER 435

The guide (3) is completely decoupled. Note that it is consequently
impossible to have all three diagonal elements vanish.

12.16. The Use of the T-junction as an Element of a Tuner.—It will
now be shown that if a plunger is inserted in guide (3) to short-circuit it,
the remainder of the guide acts as a line with a shunt susceptance at
the symmetry plane. The electrical distance to this susceptance will
not, in general, be the same as the geometrical distance.

A shunt susceptance in a transmission line sets up equal waves travel-
ing in opposite directions. This can be seen from the scattering-matrix

analogue of Eq. (64).
S S
S = e 106
[Szl Sn] ( )
where
S = %(31 + 82),

Sz = #(s1 — S2).

(Reference planes are assumed to be chosen as in Fig. 12:6.) For a thin
iris, s, = —1. When the iris is completely absent, s; = +1 and « = 0;
S becomes

_ 10 1
s_[1 O]. (107)

With the iris present, S is given by Eq. (106) which, it is to be noted, can
be obtained from Eq. (107) by adding 3(si + ss) to every element of
Eq. (107). Thus a pure susceptance generates waves of equal amplitude
in either direction. = Another way of expressing this relation is

811 — 8| = 1 (108)

provided the junction is a pure susceptance.
In order to check this relation for the T-junction with a plunger in
guide (3), it is necessary to obtain a solution with a pure standing wave

A v Y A

—_— —_—
R e o

e,

aA 5 A4y

TA

R IHV = AT%

Fia. 12-13.—Operation of a T-junction as a stub tuner.

in (3) but with traveling waves in the other guides. To be more explicit,
let a solution with power entering guide (1) be combined with a solution
with power flowing into guide (3). This is illustrated in Fig. 12:13, in
which the small Greek letters have the same meaning as in Eq. (103).
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The amplitude A has to be chosen in such a way that there is a standing
wave in arm (3). The condition for this is

¥4 + 8 = e?,

where ¢ is 4 phase determined by the position of the plunger in guide (3).
If the junction acts as a shunt susceptance at the symmetry plane, Xq.
(108) must be satisfied; therefore

fed + 7 G4+ _ |
toA4 4 |17

from which
la — 8] = L

It is apparent from Eq. (104) that this relation is correct. Hence the
junction acts as a shunt susceptance. From Eq. (103),
a— 6= 83.

Thus the electrical length of line between the two terminals is s;. This

electrical line length may be deter-

mined experimentally by inserting a
Magnetic wall  plunger in arm (2) and adjusting until

i
f
< . ;
! there is no coupling between (1) and
I] (3). Under these conditions the plung-
—_—y er is electrically an integral number of
Eigenvectors a, and a, half wavelengths from the effective

F16. 12-14.—Boundary conditions for  susceptance. Another method that can
eigenvectors 2, and a,. be used to determine this length will be
taken up in the next section.
It should be noted that the reflection coefficient of the junction is

2

Y Y
S¢=Q+E=a+éw_~6.

This reflection coefficient is zero when

g g
«
It may be verified, by substituting from Eq. (103), that this equation has a
solution with real ¢.

The eigenvectors a; and a, are also eigenvectors of F with eigenvalue +1.
This is the usual even solution which is equivalent to the field distribution
when the symmetry plane is replaced by a magnetic wall (see Fig. 12:14).
The magnetic wall reduces the junction to a two-terminal junction for
which there are two eigenvectors a, and a&,. The eigenvector a; is odd
about. the symmetry plane. The fields are those with the symmetry
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plane replaced by a metal wall (see Fig. 12-15). To measure the proper-
ties of a right-angle bend with a magnetic wall, it would be necessary to
apply equal incident waves to the symmetrical arms of the T-junction.
The right-angle bend of Fig. 12:15, how-
ever, can be constructed, and its prop-

erties measured directly. Note that the Electtic wall
eigenvalue of S for a; (Fig. 12-15) is s;

which is also the distance along the line to @

the effective position of the susceptance Eigenvector a3

when the junction is used as a tuner. Fia. 12-15.—Boundary condi-

This, then, is another way in which thig tlons for eigenvector as showing
N ) ’ . i magnetic field lines.
linedength can be determined. The series
T-junction is analyzed in a similar way. If a plunger is inserted in guide
(3), it acts as a series reactor in the line.

12-17. Directional Couplers.—Most of the directional couplers in use
have a symmetry such that their scattering matrices have the form

a Bly
8 «a 6 %
S=1_. . (109)
Yy o0a B
5 vi8 a

It will now be shown that if this junction is matched (a = 0), it is also a
directional coupler; and conversely if it is a directional coupler (say
B8 = 0), then it is matched. Firstlet« = 0. Then, since S is unitary,

Re (85*) = Re (v6*) = Re (v8*) = 0. (110)

Equation (110) states that plotted in the complex plane, the three vectors
7, 8, and 8 are mutually at right angles. This is possible only if one of
them vanishes. If one vanishes, however, the device is a directional
coupler.

The converse of this theorem is also easily proved. If the device is a
directional coupler, then either 8, v, or & must vanish. Assumethat
B = 0. The three remaining complex quantities must again be at right
angles to one another, and one must vanish. Assume first that a« # 0.
In this case either ¥ or 8 must vanish, but this corresponds to the limiting
case of a directional coupler with zero coupling. Except for this case,
e = 0 and the coupler is matched. Thus a directional coupler with a
nonvanishing amount of coupling and with the symmetry given by Eq.
(109) is automatically matched.

12.18. The Single-hole Directional Coupler.—The single-hole direc-
tional coupler is an example of a junction having three symmetry axes
but no symmetry planes.
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In Fig. 1216 the symmetry axes are designated by Ri, Rs, and Rs.
The terminal planes are numbered (1), (2), (3), and (4), and the direction
of positive electric field in each plane is indicated by an arrow. Figure
12-17 is a representation of the common metal wall between the two

Fig. 12:16.—Directional coupler.

waveguides. The coupling hole is shown as well as the symmetry axes.
The coupling hole may have any shape consistent with the symmetry
conditions.

Symmetry Operators.—Designate the operation of 180° rotation about
the various symmetry axes by the
7 three symmetry operators R;, R., and
R;. These three operators have the

5‘\> /\// ~R, multiplicative properties
37 Ny
Ri=Ri=R=1I
P
P o~ R3 R\R; = R,
<7 RS RoRy = R (111)
Fia. 12:17—Wall common to the RsR, = R,

two waveguides of Fig. 12-16 showing
coupling hole. . . .
where I is, as usual, the identity opera-

tor. It should be noted that all four operations can be generated by R,
and R,. Let these symmetries be the generators of the group.
The matrix representation of R, can be seen by inspection to be

0 0;1 0
0 0{0 1
Ry = |-t ] - (112)
1 00 0
0 1;0 O
The operator Ri, operating on the terminal quantities
a,
— a: ’
a= a5 (113)




Sec. 12-18] THE SINGLE-HOLE DIRECTIONAL COUPLER 439

interchanges the first and third as well as the second and fourth com-
ponents. In a similar way the operator R, takes the form

0 0i0 1
0 0i1 0
R2= ,,,,,,,, ; ,,,,,,,, . (114)
0 1,0 0
1 0i0 0

Both R; and R: have doubly degenerate eigenvalues. However, it is
possible to take a linear combination of R; and R, whose eigenvalues are
nondegenerate. Let

M = &R: + «R., (115)
where
€ = %(1 +])v
o =401 -9, (116)
Note that
M2 = R1R2,
M = 1. } (117)

The Eigenvalue Equaiions.—The eigenvalues of M satisfy the charac-
teristic equation

mi—1=0 (118)
and are
m, = +1,
my = j)
msz = —"1,
my = —]

The eigenvalue equation of M takes the form
Ma,- = m;a;. (119)

The easiest way to obtain the eigenvectors of Eq. (119) is to note that M
commutes with R; and R.,. Since M is nondegenerate, a, must be an
eigenvector of both R; and R: (Theorem 6). The eigenvalues of R,
and R, are +1.

To illustrate the procedure for finding the eigenvectors, let a; be an
eigenvector of M with eigenvalue +1; that is, Ma, = a;. Thus,

a1 = (R, + eRJ)a;
eRia; + e2R.a,
erd; + ers;
= (eir1 + erz)ay,

where 7, and r. are eigenvalues of R; and R; and must be either *1.
From Egs. (116), €; + e¢; = 1; thus for the eigenvalue m; = 1, the
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eigenvalues of R, and R, must be +1. Thus a, is an eigenvector of
R; and R; with 41 as eigenvalue. From Eq. (112), the following condi-
tions are imposed on a,:

1) — 1)
Zf:lj ~ Zi}f ] (120)
The matrix R; imposes the conditions
n - 1
o =l (121)
Conditions (120) and (121) require that
af = o = o’ = aP. (122)
Clearly a possible eigenvector is
1
a, = 3 } . (123)
1

In a completely analogous way the remainder of the eigenvectors can be
shown to be

1 1 1
a2==}—i, a3=%_i; a =1 :i (124)
—1 —1 1

Note that M is symmetric, and by Theorem 3 the a’s are all mutually
orthogonal. They have been normalized to unity. The eigenvalues of
the three symmetry operators R;, R;, and R; for the four eigenvectors
a; . . . a4 are given in Table 12-7.

TasLE 12:7.—EIGENVALUES FOR THE SINGLE-HOLE DirecTioNaL CoupPLER

Eigenvectors
P i S W

a; a2 a; : ¥
Rijt 1 -1 -1

Symmetry

Rijl -1 —~1 1 Kigenvalues
operators

Rl —1 1 -1

Since the scattering matrix must commute with Ry and Rs, it also
commutes with M. By Theorem 6, the a’s are also eigenvectors of S,

Sak = 8rds. (125)

In Eq. (124), the eigenvectors of S are pure real, a condition required by

e e~
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Theorems 4 and 5 if the s; are nondegencrate. Equation (125) can be
written in the unified form

ST = TS, (126)
where
L
1 -1 1 -
T=3%]-- e ,
1 1 -1 -1
1 —1i -1 1
st 010 0
0 80 O
Sy = [ — .
0 O0iss O
0 0?0 84

Since T is symmetrical and orthogonal, Eq. (126) may be written as
S = TS,T. (127)
The product on the right-hand side of Eq. (127) may be expanded to give

[ ,BE‘Y 5
8 ai& ¥
R L (128)
Y dla 8
8§ viB a
where
= £(s1 + 82 + 53 + 84),
= (51— $2 + 83 — 84), (129)

= $(s1 + s2 — s3 — 84),
= 1(s1 — 82 — 83 + s4).

As a check on the correctness of Eqs. (129), note that by Theorem 8,
spur S = sy + 52 + s3 + 84

As another check assume that @ = 0. Since the four eigenvalues s;, have
unit moduli, this condition can be satisfied only if the four s’s are paired,
with each pair consisting of two eigenvalues of opposite sign. There are
three possibilities

o R T R

§1 = —82 .
53 = —s4 } vy =0, (130)
81 = —83 .
83 = —384 ] b= 0’ (131)

S1= “8‘} 5= 0. (132)

S = — 83
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Thus the general condition is satisfied: A matched junction is automati-
cally a directional coupler. The three conditions given by Eqgs. (130),
(131), and (132) show that in so far as symmetry is concerned, it should
be possible to match the junction in such a way as to have guide (1)
decoupled from any one of the other three guides.

Field Distribution of the Eigenvectors.—For this discussion, it will be
assumed that the wall between the two guides is thin (Fig. 12:17). How-
ever, there will be no assumption about the shape or size of the coupling
hole other than that it satisfy the proper symmetry requirements.
Equations (50) show the conditions that the fields must satisfy along a
symmetry axis for the ‘“odd” and “even’ solutions. These conditions
may be combined with the results of Table 12-7 to obtain information
concerning the electromagnetic field in the coupling hole.

For example, consider the eigenvector &, This eigenvector is even
under R; but odd under R; and R;. From Eq. (50), the field normal to
R, must vanish along the axis R;. Also the field parallel to R; and R;
must vanish along Re and R;. These conditions are compatible with a
field in the center of the hole in the R; direction only. The components
of the electromagnetic field at the center of the hole, for each of the
eigenvectors, are

a; — no field,
a,— FE,, H,,
as — E3, H,,
as — Eg, H,.

The subseripts of E and H correspond to components along the three
symmetry axes.

Symmetry with § = 0.—Symmetry cannot be used to give quanti-
tative information concerning the relative strengths of the electric and
magnetic fields in the coupling hole except for one special case. When

= 0° or 180° new symmetries appear. In fact, the symmetry of the
junction is then complete with three symmetry planes, three symmetry
axes, and a symmetry point. The plane of the coupling hole becomes
a symmetry plane. Let F represent the operation of reflection in the
plane of the hole. The eigenvectors a; are also eigenvectors under F.
The eigenvectors a; and a, correspond to the eigenvalue +1, and a3
and a,; to the eigenvalue —1. It is to be remembered that for the
eigenvalue —1, the field quantities satisfy the boundary conditions
of an electric wall in the plane of the hole. Thus, since the wall is
thin, the hole effectively disappears. The eigenvectors a; and a, have
field distributions characteristic of two independent waveguides. Thus
the hole has no effect on the fields for these two eigenvectors for § = 0.
It shouid be emphasized that this is true independently of the size of
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the hole. Thus for 6 = 0,
83 = +1

Sy = —1.

Operation as a Directional Coupler—It will be assumed that the
coupling produced by the coupling hole is small. However, nothing will
be assumed about the shape of the coupling hole other than it have the
correct symmetry. The four terminal planes in Fig. 12°16 were chosen
to be one-half wavelength from the Rj-axis. For the problem of most
interest, namely, that of the small coupling hole, the effect of the hole on
the field quantities may be considered as a perturbation. The zero-order
approximation is obtained from the field distribution without the coup-
ling hole. In this case the problem reduces to two independent guides
and the eigenvalues are easily seen to be

s = +1,
s = —1,
SO = +1, (133)
s = —1.

Equations (133) will be called the unperturbed eigenvalues.

It is to be noted that the eigenvalues given in Egs. (133) are pure real;
and for small coupling, the perturbations on these eigenvalues will be
essentially imaginary. The conditions of Egs. (133) are independent
of the angle between the two waveguides, but the perturbations will, in
general, be a function of this angle. Let the perturbations be denoted by
s{?(8). From the previous discussion of the fields associated with a; and
a4 for 6 = 0 it is clear that

s¢7(0) = s47(0) = 0. (134)
Also for similar reasons
s(m) = s () = 0. (135)

The conditions of Eq. (135) can be shown formally to follow from Eq.
(134). Let us introduce the operator Ry which rotates 6 through 180°.
This has the effect of interchanging the terminals (1) and (2). This
transformation, in acting on the terminals, takes the form of the matrix

0 1i0 0
1 00 0
Ro= | - — :
0 0i1 0
0 0/0 1
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When R; operates on the a’s, the result is

Rsa, = ay,
Reae = —ay,
Rea; = a;,
Reas = —a,.

The eigenvalue equation Sa, = s,a, is transformed by R, into
RoSR;lRaak = SkRﬂah
S'(Rear) = si(Reax)s

where 8’ = R,SR;! is the scattering matrix of the transformed junction.
But

S'a; = siay, (136)

where

8:(0) = si(r + 6). (137)

Thus
s;(0 + 7r) = 81(0),
s2(8 + ®) = s4(6),
83(0 + 7") = 83(0),
848 + 1) = s.(0).

(138)

Also it may be seen that
se(0) = s(—9),

from Eqgs. (138) and (134).
Remembering Eqs. (134), (135), and (137), typical perturbations can
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Fie. 12:18.—Perturbations of eigenvalue of S as a function of a.

be plotted as a function of 6, as in Fig. 12-18¢. By adding these curves
together correctly, the values in Fig. 12-18b are obtained. It should be
noted that the two curves will always cross provided that for 8 = 0,

(s8] > ]s{P]. (139)

Referring to Eq. (129) it can be seen that 8 = 0 at the crossover point.
Thus the device will act as a directional coupler at some angle provided
that Eq. (139) is satisfied. Tt should be pointed out that the device is

—r
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not a perfect directional coupler in that, in general, @ # 0 at the crossover
point. This seems to contradict the results previously obtained, but
there is no real paradox. The relation § = 0 is only an approximation
based upon the small-coupling assumption that s’ is pure imaginary,
which is, of course, not exactly correct.

12:19. The Biplanar Directional Coupler.—The structure of the
biplanar directional coupler shown
in Fig. 12-19 is characterized by two
symmetry planes F, and F, and a
symmetry axis that is the line of
intersection of these two planes.
The plane that contains the axes of
all four guides will not be regarded
as a symmetry plane. This partic-
ular symmetry group can be gener- Fra. 12-19.~Thcc:ml3ieprl-anar directional
ated by the symmetry operators F,
and F.. In operating on terminal quantities (current, voltage, incident-
wave amplitude, ete.), F, and F, take the form

0 0i1 0 0 00 1
0 07;0 1 0 0'31 0
F1 = ”'""-:: """"" ) F2 = - ~i- .
1 0,0 O 0 1i0 0
0 100 1 0i0 0

Note that although the symmetries of Figs. 12-19 and 12-16 are quite
different, the generators of each of the symmetry groups take exactly
the same form when written as matrices. A comparison may be made
with Eqs. (111) and (113). F,and R, are quite equivalent to each other,
and F; is equivalent to Ry As a result of this fact, except for those
results connected with the symmetries of the field, namely, the field
distributions for the various eigenvectors, all the results obtained for the
single-hole directional coupler also apply to Fig. 12:19. In particular,
the eigenvectors of Fqs. (123) and (124) are eigenvectors of the scattering
matrix that takes the form of Eq. (128). Table 127 is still valid if
R, and R; are replaced by F, and F» and R; by the rotation R.

Fields Associated with the Four Eigenvectors—From Table 12-7 it
can be seen that the eigenvalues of F; and F; for the eigenvector a; are
+1. From Eq. (45) it is seen that the fields at the two symmetry planes
satisfy the conditions imposed by magnetic walls along the symmetry
planes. In Fig. 12-20, these boundary conditions are shown. The
figure also shows the boundary conditions that the remaining eigenvectors
must satisfy. Note that if a thin metal plate is inserted in the plane F,
in such a way as not to destroy the symmetry, the phases of s, and s,

e - WS
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will be changed but not those of s; or ss.  Also 8; or 84 can be changed by a
symmetrical metal wall in F>. Moreover, it can be seen that a metal pin
inserted in the guide along the symmetry axis will change s; but leave
the other eigenvalues of S unchanged.

The insertion of irises in the two symmetry planes and a pin along
the symmetry axis are three adjustments that can be used to obtain any
scattering matrix consistent with this symmetry, for example, that for a
directional coupler. It must be assumed, however, that these adjust-
ments have sufficient range to obtain the desired results.

In order to be a directional coupler, the junction must be matched.
The condition for a match is the vanishing of the sum of the eigenvalues

R R
- 5
1/ 1
“ Z
S2 a, %3 a,

Magnetic
walils
1 Symmetry
R \ - 2Xis R
Incident ) F R
amptitude=1 = 1¥2 1
1
=N (/

a Symmetry
Reflected planes 3,
amptitude = 5,
a, a,
Fre. 12:20.—Boundary conditions for eigenvector solutions ai, az, a;, a4

of S in Eq. (128). Let us try by means of obstacles along the plane F,
and the symmetry axis to cause «, in that matrix, to vanish. The phase
of s, can be adjusted by means of the obstacle in F in such a way that
s; = —ss. Then the axial pin can be used to set s; = —8,. These two
conditions, substituted in Egs. (129), result in

a=10
’ 140
§=0. (140)
Another possible procedure is to adjust s; and s, to satisfy
81 = —83, } (141)
Sg = —384.

These conditions, substituted in Eq. (128) yield

a =0,
B = 0.
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Figure 12-21 shows the form that the obstacles might take. The power
distribution is that given by Eqs. (140). Notice that the distribution is
just opposite that which one might expect from simple optics.

If in Fig. 12-19 the angle 6 is very small, the two eigenvalues s; and s,
are very nearly equal. This can be seen by reference to Fig. 12-20.
In this case the wall F'; together with the remainder of the guide forms a
tapered waveguide that at some position reaches the cutoff width. The
amplitude of the wave dies down quickly after this. As a result there is
very little electromagnetic field at
the wall F;. Hence, it matters
little whether F51s electric or mag-
netic. Thus it is seen that for
small 8 the wave incident in guide

—Va(S,+5,) Va(s3-8,)

(1) goes only into guide (3) when ° Iris
the junction is matched as in Fig. 1

12-21. This result is even more /

general. In factit can be seen by i @

the inspection of Eq. (129) that
if s3 = sS4 B = 5. If in addition F16. 12:21.—One method of matching the
a=0,theng =68 =0and|y| = 1. junction of Fig. 1219,
Thus independently of the mechanism used to match the junction, v
is the only nonvanishing matrix element.

12.20. The Magic T.—The “magic T” may be defined as a diree-
tional coupler with equal power division. Clearly the scattering matrix
of a magic T may always be written in the form

0 Oic f
0 Oig R

S = |-oee [F— . (142)
e gi0 0
f RO O

The elements e, f, g, and 2 are not completely independent but must
satisfy the unitary conditions

ef* + gh* =0,

eg” +Jh" =0, 143
lel? + 19l = 1 + A2 = 1, (143)
el + [f]2 = lgl? + 1Az = 1

In addition, the equal-coupling condition requires that

lel = Ifl = lgl = |r].

By the correct choice of the positions of the terminals in three of the four
guides, three of the four parameters ¢, f, g, and h can be made to have any

SRS, . S
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phase angle desired. The fourth argument is then determined through
Eqs. (143). For example, any magic T may, by proper selection of
reference terminals, be made to have a scattering matrix with one of the
following forms,

0 0ij J
§ =t S S (144)
V2l o o
J —ii0 0
001 j
s=_1 004! (145)
V210 o
j 110 0

Biplanar Symmetry.—It should be noticed that Eqgs. (145) and (128)
are of the same form, and it might be expected that the biplanar direc-
tional coupler of Fig. 12-19 could be tuned in such a way as to make a
magic T out of it. This tuning would require three adjustments which
could be the irises in the two symmetry planes and the pin along the
symmetry axis. The phases of s1, s;, and s4 could be adjusted until

$§1 = —8g,
Sz = — 384,
81 = ]8s.

If these values are substituted in Eq. (129), the elements of the scattering
matrix are found to be

0
=0
1
T
1
z

(146)

Sl(l - ]))
si(1 + J).

o2 W R

I

Except for a phase factor, ¥ and § are the same as in Eq. (145). In fact
by choosing the terminals in a new symmetrical set of positions Egs.
(146) become

1
=5

1.
o= —_j

Ve’

12.21. The Synthesis Problem.—A few words regarding the synthesis
problem at microwave frequencies are necessary. At microwave fre-
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quencies there are a large number of problems in which the frequency
dependence of a device is only of incidental interest. This is because the
frequency is so high that the bandwidths are small compared with the
frequencies.

Wideband systems or junctions are of importance, but only because
it is desirable to have components that are fixed-tuned. In any case,
there is a synthesis problem regarding the attainment of certain properties
at one frequency. Additional properties may be desirable, such as power-
handling capacity or large bandwidth, but these may be regarded as
secondary in importance.

At low frequencies, lumped elements of inductive or capacitive
characteristics are used as the building blocks from which a network is
synthesized. At high frequencies this type of technique is not particu-
larly useful because of the size of the resulting components. The trans-
mission line is a convenient element for microwave circuits.

To understand how the transmission line may be used to synthesize
a network, consider the admittance matrix

Yiu Y2 - - -
Yar Y22 - - -
Y =] . (147)
This may be written as
¥y 0 0 Q- . - 0 yiz 0 - - -
0 0 0 0. .. ya O 0. .-
O SN NS
0 0 0 -
1] Yoz 0 -
0
+70 e

Each of these submatrices may be examined individually. The first
matrix has zeros in all rows and columns except the first. This implies
that if voltages are applied to all the terminals, the only terminal influ-
enced by the first submatrix is terminal (1). At this terminal a current
proportional to y;; flows. In other words, the first matrix in Eq. (148)
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may be represented by a shunt susceptance y1; connected to the terminals
(1). In a similar way the second matrix can be represented by a trans-
mission line one-quarter or three-quarters wavelength long depending on
the sign of yiz, of characteristic admittance |y.4|, connected between the
terminals (1) and (2). The remainder of the submatrices follow in a
similar way. The end result is illustrated for a three-terminal-pair device
in Fig. 12-22. i

An alternative arrangement is a synthesis of the impedance matrix
in terms of lines connected in series. This is a convenient way of syn-
thesizing a junction by means of
lengths of waveguide connected in
series at the various junctions.

In order to synthesize a par-
ticular circuit whose scattering
matrix is given, it is necessary to
solve for the equivalent impedance
or admittance matrix and then
% =| ] use the above synthesis procedure.
Fia. 12-22.—Synthesis of a three-terminal- It should be pointed out that by a

pair junction in coaxial line. . . .
discreet choice of the location of
the reference planes the impedance matrix can often be made to take a
simplified form with a resulting simplicity in brass.

Synthesis of the Biplanar Magic T.—1t will be noticed that Eq. (145)
is very closely related to the symmetry matrix M given by Eq. (115).
In fact,

_1-J
S = 7 M. (149)

Substitution of Eq. (149) in the second of Egs. (117) gives
St +1=0. (150)
The admittance matrix is given by
Y=(1-8dU+ 8L

This equation may be written

Y = (-8 + 83 + 8=l — §)~'(l + §)~*
= (I — 25 4 282 — 28 4 S (I — S9-L

Substituting from Eq. (150),

Y = —S(l — S + 8. (150

Y
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Substituting from Eq. (145) in Eq. (151),
Y = P . (152)

The synthesis, by coaxial lines, of a junction whose admittance matrix is
given by Eq. (152) follows in the same way as before. Note that the
lines with a characteristic conductance of unity are one-quarter wave-
length long. Those whose character-
istic conductance is /2 are three- @ [ %= @
quarters wavelength long. === rrrrris

From a practical point of view & :
a three-quarter-wavelength line is /AN e g,=VZ
more frequency-sensitive than a &
quarter-wavelength line, and it is =
desirable, if possible, to choose ref- (Z)IL g
erence planes in such a way that all I_;
elements in the matrix of Eq. (152) A
are positive. If the reference planes Fia. 12:23.—Synthesis of a magic T in
are moved back one-quarter wave- coaxial line.
length, S in Eq. (151) changes sign and, as may be verified, the admit-
tance matrix of this new junction is

0 1! 0 + 2
1 0:+ V2
Y=g S — .
0 + 2 0 1
+ V2 0 1 0

This junction may be synthesized by the circuit of Fig. 12:23. It should
be noticed that power entering arm (1) is split equally between arms (3)
and (4) and no power leaves arm (2).

12-22. Coupling-hole Magic T’s.—As another example of a magic T
with a scattering matrix of the form of Eq. (145), consider a directional
coupler of the type shown in Figs. 12:16 and 12.17 with § = 0. The
coupling hole or holes will be assumed to be large enough to produce
equal power division. One possible arrangement is a set of two holes
about a quarter-wavelength apart. Another possibility is a large slot
or oblong hole in the direction of the guide axis. As was pointed out
previously, the symmetry of the junction becomes complete for § = 0.
The symmetry plane containing the coupling holes becomes effectively
an electric wall for the eigenvectors asand a;.. Consequently the coupling
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hole has no effect upon these standing waves, and the field distributions
are identical with those of two independent waveguides. As a result,
because of the location of reference planes, the eigenvalues of the scatter-
ing matrix for these eigenvectors are (see paragraph entitled Symmetry
with 8 = 0, Sec. 12-18).

S3 = }, 8y = -1.

The eigenvalues s, and s, are dependent upon the size and shape of the
coupling hole or holes. However, it is to be noted that these two eigen-
values are the only parameters of the junction left open. Thus it requires
only two adjustments to convert the junction into a magic T. For
example, if the coupling is produced by two circular coupling holes, there
may exist a particular diameter for the holes and a distance between the
holes for which the device is a magic T.

With reference to Eqs. (129), it is evident that for the matched junc-
tion for which @ = 0, the conditions
of Eq. (130) require that v = 0.
Thus, if the junction is a magic T
(for which o = 0), it must be one for
which there is no coupling between
guides (1) and (3) or between (2) and
(4). It is to be noted that this is
just the opposite of the behavior of
the small-single-hole coupler for
which the coupling between (1) and
(4) is the least (see last paragraph

Fie. 12-24.—Magic T. of Sec. 12-18). Referring again to
Eqgs. (129), it is evident that the conditions to be satisfied in order that
the junction be a magic T are

s1= —8 = 1j.

It should be noted that only one condition must be satisfied in order that
the junction be a directional coupler, namely,

8§ = —S8

A suggested means of designing such a magic T is to vary one of the
parameters of the system, for instance, the length of a wide slot, until
the device is a directional coupler (matched). The power-division ratio
is measured, and the procedure repeated with another slot width. These
two sets of data are used to predict the correct width. This procedure
is refined by successive approximations.

12.23. Magic T with a Single Symmetry Plane.—The junction of
Fig. 12-24 has a single symmetry plane. For the terminal planes num-
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bered as shown, a reflection in this plane can be represented by the matrix

0 10 o0
1 00 O
F= | n A
0 01 0
0 0i0 —1

As F commutes with the scattering matrix and is its own inverse,
S = FSF.

Multiplying out the right-hand side and setting the product equal to the
left-hand side,

1 = Szz,
S31 = Ss
: 153
Su = —Sn, ( )
Sa4 = 0.

It can be seen also from the field distributions in the junction that the
above conditions are correct. The junction is not yet a magic T, as
there is still coupling between (1) and (2) ; moreover it is not matched.

Assume that matching transformers are inserted in such a way as to
make

Saa = S“ = 0

The scattering matrix can then be written as

a ﬁiv 8
8 aly —38
§ = |-coeee FR——— ) (154)
¥ vi0 0
8 —5@0 0

The scattering matrix is unitary, and the absolute square of each column
must be unity; that is,

lal* + (817 + Iv[* + Jol* = 1,
2ly|? =1, (155)
2182 = 1.
From Egs. (155),
laf? + |8* = 0.

This is possible only if both a and 8 vanish. Thus with a = 8 = 0 the
scattering matrix of a magic T is given by Eq. (154). Tf the positions of
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the reference planes in guides (3) and (4) are chosen correctly, the scat-
tering matrix can be made to take the form

0 o0t 1

s_ |0 o -
=L | R (156)

V21 10 o

1 —130 0

which is, except for sign, identical with Eq. (144).

It should be emphasized that the lack of coupling between guides (1)
and (2) results from the matching of the device into arms (3) and (4).
However, the zero coupling between arms (3) and (4) results from sym-
metry. It is this symmetry property which makes the junction shown in
Fig. 12-22 a particularly desirable type of magic T.

Matching Conditions.—It should be noted that it takes four conditions
to match the junction of Fig. 12:24. Two conditions are required for
each of the terminals (3) and (4). The biplanar magic T required three
adjustments, and the large-hole type only two. Thus the greater the
number of symmetries of a junction, in general, the fewer conditions
required for a match.

If power enters guide (3) only, the field distribution is even about the
symmetry plane. This may be seen from Eqgs. (153). If power enters
guide (4), the field is odd about the symmetry plane. These distributions
are eigenvectors of F, Thus at the symmetry plane the fields satisfy the
boundary conditions of a magnetic or an electric wall.

It is highly desirable to have methods of adjusting for match that are
independent for guides (3) and (4). One way in which this could be done
is to introduce magnetic and electric conductors in the symmetry plane.
Each of these materials would affect only one of the field distributions.
For instance, a metal sheet in the symmetry plane has no effect on the odd
field distributions or on the power entering arm (4).

Of course, the lack of a good magnetic conductor is a difficulty, and
it is necessary to use some other method. In practice, the junction has
been matched by a combination of a metal object in the symmetry plane
and an inductive iris in guide (4). This iris is far enough inside the junc-
tion so that fringing fields from the even distribution are negligibly small.

12-24. Synthesis of Magic T with a Single Symmetry Plane in Coaxial
Lines.—Before proceeding, it should be noticed that there are several
possible locations of a symmetry plane that lead to a scattering matrix of
the form given by Eq. (156). For instance, instead of the plane’s cutting
terminals (3) and (4), it could have cut terminals (1) and (2). Another
possibility is a symmetry plane that reflects (1) and (4) into each other
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and (2) and (3) into each other. It will be this type of symmetry which
will appear in the coaxial magic T.

Notice that the matrix of Eq. (154) is pure imaginary. Therefore,
since S is unitary,

S = —1. (157)
The relation between the admittance and scattering matrix becomes

Y = (1 - S)(1 + )
=(1-8%1 - 8§14 8)! (158)
= (1 — 28 + SY(1 — Sy~

Substituting from Eq. (157), Eq. (158) becomes
Y = —8. (159)

Using the methods outlined previously, the junction whose matrix
has the form of Eq. (159) would be synthesized by three quarter-wave-
length lines and one three-quarter-wavelength line. This is illustrated
in Fig. 12-25.

= Symmetry
| plane

Fig. 12:25.—Ring-circuit synthesis of a Fia. 12-26,—Star.
magic T in coaxial line.

12.26. The Star.—The junction illustrated in Fig. 12-26 has a five-
fold axis of symmetry and five symmetry planes. The plane including
the axes of all five guides will not be regarded asa symmetry plane.

Let a rotation of 72° counterclockwise be designated by R,, one of
144° by R,, and so forth. Then the five rotations are I, R, R;, R;, and
R,. The five symmetry planes (see Fig. 12-26) are designated by

F, ... Fs

These ten symmetry operators form a group with the following multipli-
cation table:
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TaBLE 12-8.—MuLTIPLICATION TABLE FOR THE GROUP OF SYMMETRY OPERATORS

FOR A STAR JUNCTION

I R, R, R, RF F, F, F, F,
I'\f/ R R, R, RF, F. F; Fi. F
RlRl RZ R3 RA I iF:( F4 F.‘) Fl F2
RJR, R, R« I R/Fs F, F, F, F,
RJR; R, I R, RJF. F; F. F, F
RJR, I R, R, RafF«x F, F, F. F;
F|F. F, F;, F; F41 R, R, R, R,
F.F, F; F; F, FlfRa I R, R, R,
F;F, F, F, F, FiR, R; I R: R,
F|/F, F, F; F; F/R, Ri R; I R,
FJF; Fy, Fi F, FiR, R, R, Ry I

1t may be seen by inspection of Table 12-8 that R; and F, are genera-

tors of the group.

In matrix form the operators R, and F, are

R1=

F1=

<

S oo~ o0 O

(U]
00
1 0
01
0 0
00
0 0
0 0
0 1
10

OO =D OO0 O~

(160)

(161)

By referring to Table 12:8 it may be seen that R, satisfies the equation
R = 1.

It also can be seen by inspection of the characteristic determinant that
the characteristic equation of R, is

s —1

0

and that the eigenvalues of R; are the five fifth roots of 1 (see Theorem 7).

Let

r =
e =
rg =

1

el ¢1’
el

Let the eigenvalue equation for R, be

¢1
b ¢2

Rlak = Traje.
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The five eigenvectors can be written by inspection

1 1 1 1 i
1 s T3 T3 Ty
a; = |1], as = |14, a3 = |r2], as = |71s5], a; = |r3].
1 Ta Ts To Ty
1 T2 T3 T4 Ts
(162)

Since the eigenvalues of R, are nondegenerate, the eigenvectors of
Eqs. (162) are, by Theorem 6, eigenvectors of the scattering matrix S.

From Theorem 4 the eigenvalues of S associated with a; . . . a; are
degenerate, since the r’s are complex numbers. The nature of these
degeneracies can be found from Eq. (161). If

Sak = Skry
S(Fiar) = si(Fias). (163)
Thus F,a, is an eigenvector of S with an eigenvalues,. But
F.a, = ay
Fia: = a;,
Fias = a4 (164)
Fia:, = a,,
F185 = ag.

Substituting Egs. (164) in Eq. (163), we have

82 = 85
83 = S4

There are only three independent eigenvalues of S. Since oneof these
can always be adjusted by location of the terminal planes, there are only
two important independent parameters of the star which may be
adjusted by matching transformers.

Field Distributions of Eigenvectors.—The field distributions are very
similar to those of the symmetrical Y-junction. The components of the
electric and magnetic fields perpendicular to the symmetry axis vanish
along the axis for a;. All the remaining eigenvectors are characterized
by fields rotating about the axis. The electric and magnetic fields
parallel to the axis must vanish along the axis.

It is apparent that a pin along the symmetry axis will affect s; but not
82 Or 83.

The Scattering Matriz.—The scattering matrix may be obtained from
the three eigenvalues in the usual way. Since the eigenvectors a; are
not all orthogonal to each other, it is convenient to pick an orthogonal
set. Tt may be verified that the set
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b,

1
= —ada
N

b, = —\/IT_O (a2 + as),

b = T/I_F) (a3 + ay), (165)

b4 = —‘2—0' (aa - 3-4)’

V10

b5 = —J_O (az. - as)

V10

is orthogonal, real, and normalized to unity.
The eigenvalue equation for S may as usual be written

SB = 8B,

where B is a matrix with the eigenvectors of Eq. (165) as columns and

where
s 0 0 0 O
0 s2 0 0 O
Sd = 0 0 83 0 0
0 0 0 s O
0 0 0 0 s
Since B is orthogonal,
S = BS,B.
If this equation is multiplied out, it is found that
«a 8 v v B
B a B v v
S=1|vy 8 a« 8 7|, (166)
Y ¥ B a 8
B v v B «

where

a = (s1 + 28y + 2s3),
B = s+ (ra + rs)s2 + (r3 + ra)sal, (167)
Y = ?1;[81 + (7'3 + T4)6‘2 + (7'2 + 7‘5)83].
It should be noticed that « is one-fifth of the sum of the eigenvalues, in
accordance with Theorem 8. As another check on the correctness of

Egs. (167) note that if
81 = 8§ =

then

< ™ R
|
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The star may be adjusted in such a way as to be matched. This
may be done by inserting any obstacle that does not ruin the symmetry,
for instance, a cylindrical rod along the symmetry axis. In general, this
will change the phases of all three eigenvalues with respect to one another.
The second adjustment could be a pin along the symmetry axis. This
changes the phase of s; only. Thus
these two adjustments are independ-
ent; and if there is sufficient range in
the adjustments, the junction can be
matched. If a = 0,

18l = Ivl,

and 8 and v are at an angle of 120°
with respect to each other. Thus
the matched junction distributes the
power equally among the remaining
four guides. Thus if the five star is
matched, power entering one of the
arms is split equally among the other
four arms.

12.26. The Turnstile Junction..—The turnstile junction shown in
Fig. 12-27 is a six-terminal-pair device. The two polarizations in the
round guide furnish two of the terminal pairs. Figure 12-28 shows the
numbering scheme of the terminal planes.

1 F,

Fi1g. 12-27.—Turnstile junction.

N Symmetry axis

4
Reference plane —] -/] :
|

Fia. 12-28.—Symmetry properties of the turnstile junction. The symmetry planes
are F1, Fa, F3, F.; the terminal planes in the rectangular waveguide are 1, 2, 3, 4; the
terminals in the round waveguide for the two polarizations are 5 and 6. A rotation of
90° about the symmetry axis is R;.

The junction has a fourfold symmetry axis and four symmetry planes.
The symmetry planes in Fig. 12-28 are designated by F,, Fs, Fy, and F,.

Let a counterclockwise rotation of the fields by 90° be designated by
R.. Let R, R;, and I represent rotations of 180° 270° and 0° respec-
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tively. Terminal numbers are kept in a fixed position under any sym-
metry operation.

The rotations and reflections form a group with the following multipli-
cation table.

TaBLE 12:9.—DMurripricaTioN TABLE OF THE SYMMETRY (OPERATORS FOR THE
TurNsTILE JUNCTION
_{{ R R, RyF, F, F; F,
{{ R R RF F, F; F.
RIR, R, Ry I F, Fy; F, F,
R R, R, I R F, F, F, F,
RyR; I R RJF; F. F, F

FF. F, F, F{I R, R\ R:
FF, F. Fi FfRy I R; R,
FyF;, F, F FiRs R, I R
F(Fi F, F; FiR. Ry R. I

It may be seen by inspection of Table 12-9 that any rotation (other
than I) and any reflection are generators of the group. In particular,
R, and F, are generators of the group. In operating on the terminal
quantities, R, and F, take the form

6 0 0 1i0 0
1 0 0 0i0 O
0 1 0 0i0 0
R,=1{0 o 1 00 0],
0 0 0 0i0 -1
0 0 0 0i1 0
1 0 0 0i0 0O
0o 0 0 1i0 0
6 0 1 0i0 0
Fo=fo 1 0o oi0o o

It should be noticed that both R; and F, can be divided, as shown by the
dotted lines, into two square submatrices. The rectangular sections
contain only zeros. The determinant of such a matrix is the product of
the determinants of the submatrices.

Let the eigenvalue equation of R, be

Ria; = rap,
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where 74 18 a root of the characteristic equation

det (R, — Ir) =0
or
(* = D+ 1) = 0.
The roots of this equation are
r = 1,
re = j (doubly degenerate),
rs = —1

ry = —j (doubly degenerate).

A set of eigenvectors is

1 1 1)

1 —J —1
a; = 1, ay = ;-, asz = i_i,

0 0 0

0 0 0

1 0 0

J 0 0

ay = —1. as = 0 g = 0
—-il’ o}’ 01

0 1 1

0 —J J

The eigenvectors a; and as are eigenvectors of the eigenvalues 72 and 7,
respectively. It may be seen by inspection that

Fia; = a,,
Fia; = a,
Fia; = ag

. 168
Fias = 2, ( )
Fia; = a;
Flaq = As.

Since the scattering matrix S commutes with R,, the eigenvectors a,
and a; are also eigenvectors of S (Theorem 6). Linearly independent
eigenvectors of S can be formed by taking linear combinations of a, and
a; and of a; and as. Let

S(az + aas) = s3(a: + aas), }
S(a; + Bas) = ss(az + fas),

where « and B are numbers. If Eqs. (169) are multiplied by F,, then
using the conditions of Figs. (168),

(169)
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S(as + aas) = s2(as + aay),
S(a4 + Bas) = s4(as + Bae).

It is seen that the eigenvalues s; and s, are both doubly degenerate. [t
should be possible to take linear combinations of the eigenvectors of both
sz and s, in such a way that the resulting eigenvectors are pure real. 1t
may be readily verified that the set

b1 = day,
b, = ¥(a: + as) + 7}704(35 + as),
b3 = da,

b4 = ‘%(az + 3.4) + %?(as + aG))
bs = —%(az —aq) + %a(as — &),

bs = —;(az — a4) + %ﬂ(aa — ag)

is pure real if @ and @8 are real. Written as column vectors, this set
becomes

1 1 1)
1 0 —1
1 -1 1
b,=1, b, = ol’ b; = 1l
0 @ 0
0 0 0
1 0 0
0 1 1
-1 _ 0 _ 0
b, = ol’ b; = 1| be = 1l
8 0 0
0 a 8
The eigenvectors b; satisfy the eigenvalue equations
Sb; = s;by,
where
S5 = 8y,
S¢ = 8i.

It should be noted that b, and b, are eigenvectors of different eigen-
values (namely, s» and s:) and consequently must be orthogonal to each
other, by Theorem 3. Therefore

af = —2.

In b; and b, only three of the elements do not vanish. If the vanish-
ing terms are disregarded, b, and b, are similar to the b, and b, of Sec.




Sec. 12:26] THE TURNSTILE JUNCTION 463

12-15 and are those of a series T-junction. 1t is possible to choose the
position of the reference planes in such a way that « = /2. Actually,
for any symmetrical position of the planes in guides (1) to (4) there is
some reference position in the round guide such that o has this value.
Assume that this has been done.

The above eigenvalue equation for S can be written

SB = BS,, (170)
where
81 0 0i0 0
0 s 0 0i0 0
0 0 s3 00 0
Sa=10 0 0 s:0 0f,
0 0 0 0:is; O
0 0 0 0:i0 s,
11 1 i 0 0 ,
1 0 =1 0f 1 1
1 -1 1 —1! o0 0
B=1i[1 0 -1 0f —1 —1].
0vV2 0-+2 0 0
0 0 0 0iv2 — /2

The columns of B are the eigenvectors by; therefore B is orthogonal.
Solving Eq. (170) for S,

S = BSdﬁ,
or
@ ¥ 8 7 € 0
% a L% 6 0 €
8 v a 'y —¢ 0
S =l 5 ¥ al 0 —¢f,
€ 0 —e Ol B 0
0 € 0 —ei O 8
where
24 =7}(31+82+Sa+84),
B = 3(s2 + s1),
Y = )[(31 — 83),
8 = 1(s1 — 82 + 55 — 34),
€. = sz (Sg — 84).

The spur of S is
4a+25=81+282+83+284,
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as 1s necessary to satisfly Theorem 8  1f the turnstile is matched,

! a=8=0.
\\J i L’_ _‘ The conditions for this are

S1= "5 (171)

T

Eigenvector b,

which lead to

-5

Therefore, if the turnstile is

Eigenvector b, Eigenvectors by and b, matched, power entering guide

(1) leaves by guides (2), (4), and

Electric wall (5). One-half of the power leaves

77 77T Magnetic wall . . by the round guide; the remainder

Tie. 12'29"‘Elge§l "'el;’::);:ght‘)?.ons boandbe's  jivides equally between guides (2)
and (4).

Field Distributions.—The eigenvalues of the four reflection operators
are indicated in Table 12-10 for the six eigenvectors b;.

TaBLE 12:10.—EIGENVALUES FOR THE REFLECTION OPERATORS oF THE TURNSTILE
JUuNCTION
b, b, by bs bs bs
Fi+1 +1 +1 +1 -1 -1
F.+1 —1 +1 —1 41 41 eigenvalues
Fa+1 - -1 - - -
Fi41 - -1 - - -

Note that only b and bs are eigenvectors of Fs and Fs.  As the boundary
conditions on the symmetry planes are determined by the eigenvalues of
the symmetry operators, Table 12-10 can be used to verify the correctness
of the diagrams in Fig. 12-29. The remainder of the eigenvectors satisfy
boundary conditions similar to those of bs.

As b, and b; are eigenvectors of S with the same eigenvalue s, any
linear combination is also an eigenvector. Let

1
1

by = bs + b, = _; . (172)
V2
(v2
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Also the vector
‘/) = by + bs
is an eigenvector of S with the eigenvalue s;.
]
|

b, = b, + by = *} . (173)

-2

— 2
The eigenvector given in Eq. (172) is introduced because it satisfies
different boundary conditions from those of either b, or bs (by or bg).

Magnetic wall

Lowest mode
propagates

Electric
wall

propagating mode

(a) Eigenvector b, (b) Eigenvalues S, and S,
Reflection coefficent S, Eigenvectors b, and b,

Single propagating
No propagating Magnetic wall mode
Electric wall

(c) Eigenvector by

d) Eigenvectors by and b
Reflection coefficent S @ ° °

Eigenvalues S, and S,
Fi1a. 12-30.—Junction partitioned by electric and magnetic walls for the various eigenvector
solutions.
Note that by and by are eigenvectors of F3and F, but not of F, or Fo. The
boundary conditions satisfied by b, or bg are illustrated also in Fig. 12-29.
Since the magnetic and electric walls shown in Fig. 12-29 divide the
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junction into separable parts, it is possible to illustrate the results in a
more graphic form. This is done in Fig. 12:30. It should be noted that
although the structures shown in parts b and d of this figure look very
different, they have the same eigenvalues; this means that they are
electrically equivalent. This equivalence, depending as it does only on
symmetry, is independent of frequency. Figure 12:-30a is the only
structure that does not have at least one electric wall passing through the
symmetry axis. If a pin is inserted along the symmetry axis, the only
eigenvalue affected thereby is s;.

Matching the Turnstile.—It should be noted that there are four
parameters associated with the turnstile, namely, the four eigenvalues.
Positions of reference planes are not important in the consideration
of power division; and since reference planes can always be chosen in
such a way as to make one of the
eigenvalues +1, only three para-
meters of importance remain.

The matching of the turnstile
requires the adjustment of three of
the parameters until the conditions of
Egs. (171) are satisfied. In practice
this might be done by inserting a triple
plunger in the bottom of the junction
along the symmetry axis. A turnstile
junction containing such a plunger is
Fie. 12-31.—Turnstile junction showing  ghown in Fig_ 12:31. The p]unger

triple plunger in position. . . .
consists of a thin pin and two concen-
tric sleeves. The matching procedure consists of inserting the two sleeves
into the guide and adjusting them until a match is obtained looking into
arm (5). The conditions for this are

8 =0,

& = —8a.

After this the pin is inserted. It will be remembered from the previous
discussion that this affects only s,. Its position is adjusted until
s; = —83. Then @ = 0, and the junction is completely matched.

12.27. Purcell’s Junction.—The device shown in Fig. 12:32 is a junc-
tion of six rectangular guides. It is completely symmetrical in the sense
that all the waveguides are equivalent. The junction may be regarded
as one generated by a cube, each guide being mounted on a face of a cube.

The terminal planes are shown as dotted lines in Fig. 12-32 and are
numbered according to a rule that allows a regular progression from one
number to the next. Each terminal plane has an arrow assigned to it
that represents the direction of positive electric field. The way in
which the arrows are assigned is evident from the figure.
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It may be seen by inspection of the figure that a rotation of 180° about
the axis marked R, turns the figure back into itself. Hence the rotation
R, is a symmetry operator. The effect of the rotation R, on the terminal
voltages may be seen from the figure. First it is seen that the voltage

F1a. 12:32.—Purcell’s junction.

of terminal (1) goes into that of terminal (6) without a change in sign.
This, together with the other permutations of the terminals, are

(1) — (6)
2)— ()
B)— @ Symmetry operator
4)—(3) R,
(5 —(2)
(6) — (1)
This permutation may be induced by the matrix
0 0 1
0 {010
i1 00
Ry = [-mer fremeennaees (174)
0 0 1§
01 0{ O
1 0 0}

operating on a current or voltage column vector.

In a similar way the 180° rotations about the axes R, and R are
symmetry operators and have, as matrices representing the corresponding
permutations of the terminal pairs,
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R3=

=

=
o - o
(=i

=

At first glance it might be thought that these three rotations are the
only symmetry operators, except for the identity operator I. If this were
true, however, the product of any two ought to yield the third matrix.
It is found that, on the contrary, the product of two of them, R, and R,
for example, yields new permutations

and
where

M, =
and

M, =

Ml = R1R2

Mf_) = RQRl’

These two operators are rotations about a symmetry axis designated in
the figure by M, or M.. The operator M, represents a rotation clock-
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wise (looking out along the arrow) of 120°. The operator M; is a rota-
tion of 240°.

The four symmetry axes of Fig. 12-32 are also symmetry axes of the
cube upon which the junction is built. R, R., and R; are symmetry
axes of the cube passing through midpoints of two opposite edges. The
fourth axis is a threefold axis of the cube which passes through diagonally
opposite corners of the cube.

It is evident from an inspection of the figure that there are no sym-
metry planes in the junction. Hence the symmetry operations are the
six rotations I, Ry, R:, R; M, and M,. The multiplication properties
of these operators are summarized in Table 12-11. Note that the group

TaBLE 12:11,—MULTIPLICATIVE PROPERTIES oF THE OPERATORS FOR PURCELL's
JunNcTIiON
1 |R1 R, R, M1 M,
R, I M, MziRz R;
R, M. 1 MliRﬂ R,

whose multiplication table is Table 12-11 is of order 6 and has three sub-
groups of order 2 and one of order 3. It is a subgroup of the symmetry
group of the cube.

As may be seen from Table 12-11, the group may be generated by
the elements R, and M. Since M} = |, the eigenvalues of M, are the

three cube roots of 1. Fach of these roots is a doubly degenerate eigen-
value. Thus

Mia, = myayy (175)
where
my, = 1, a1=a§:1+2—\/3j,
1 — V3
ms,4 = oy, 02—a¥=——2ﬁ;
Msg = Ao, e = 1,

The eigenvectors a, are not uniquely determined because of the degen-
eracy of the eigenvalues. However, a set may be easily written down.
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Let
1 1 1
1 -1 0 1
1 1 as
a; = |----- ag = |----- dg = |- ag = |-----
1 —1 0 [+ 4]
1 1 ay 0
1 -1 0 ay
U |
my=m; =1 ms = My = a,
1 0
0 1
o 0
asg = |----- ag = |----- . (176)
0 oy
(s3] 0
0 [+2}

Mms = Mg = ay
Tf S is the scattering matrix of the junction,
M,S = SM..
Multiplication of Eq. (175) by S gives
M,(8a;) = m.(Saz).

Thus Say is an eigenvector of M, with the eigenvalue m;. But this
implies that Sa, is a linear combination of the two eigenvectors in Eqs.
(176) that have m; as eigenvalues. In particular

Sa; = gna; + gra
.nd 77
Sa, = 2121 + g20Q2,

where the ¢’s are numbers.

Equations (177) may be combined to produce eigenvalue equations
for S. Multiply these equations by the numbers k, and k, respectively,
and add

Stkia; + kea2) = (guik: + gaka)a; + (giok1 + gasks)as. (178)
Assume that this is an eigenvalue equation for S. Then
S(k1a1 + k'zaz) = S(]flal + kza2), (179)

where s is the eigenvalue. Equating the right-hand sides of Egs. (178)
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and (179) results, because of the linear independence of a; and a., in the
two equations

guki + gaks = sky,

gzlkl + 9221\”2 = sk.

The permissible values of s are the two roots of the equation

gin — 8 gro| _ 0.
g1 gee — S

Let these roots be s, and ss. There are two linearly independent solu-
tions for k; and k. corresponding to each root. et these solutions be
ki and k2 fors = syand kep and kys fors = so.  Then

Sb1 = Slbl, (180)
where
b1 = kua1 + klzaz. (181)

Since S and R; commute, Eq. (180) may be multiplied by R, to give
S1(Riby) = s:(Riby).
However, as may be seen from Eqs. (176) and (174),
Rib, = kna; — kia..

Thus both the sum and the difference of the terms in a, and a, are eigen-
vectors of S with eigenvalue s;, and each of the terms k8, and kj.a.
must be independently an eigenvector of S. Therefore, because ki,
and k; may not both vanish, either a; or a, is an eigenvector. If neither
k11 nor ki vanishes, both a; and a, are eigenvectors, which implies that
s; 1s degenerate or that s; = ss. It will be assumed, without information
to the contrary, that s, and s, are nondegenerate, in which case k;; or
kiz must vanish. Without loss in generality it may be assumed that
ks in Eq. (181) vanishes; thus

8131 = $141.
In a similar way,
Szaz = Sods.

In a completely analogous way, there are linear combinations of az and
a, and of a; and ag that are eigenvectors of S. Thus let

bs = g3sa; + gasda
by = gusdls + gasds,
b; G5585 + Gseds,
bs = ¢s:8s + geede,

(182)

It

where

Sbk = &by (|83)
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Then
S(Rlbk) = Sk(Rlbk). (184)

Thus R;b; is an eigenvector of S of eigenvalue s;. However
Ria; = aias,
R1a4 = adsy
R18.5 = otadyy
Rias = asa;.
Therefore
Ribs = ai(gssas + gs4as),
Ribs = ai(gssas + gadas),
Ribs = as(gssas + gseds),
Ribs = as(gssas + gesas).
Equations (185) are compatible with Eqs. (183) and (184) only provided
that

(185)

$3 = s; and/or s,
s4 = ss and/or se.

As has always been done, it will be assumed that the degeneracy in S
is the minimum consistent with symmetry conditions. Without loss in
generality, therefore, it may be assumed that s;3 = s5 and that s, = ss.
1t requires only a renumbering of the s’s to put them into this form.

By Theorem 4, it is possible to choose linear combinations of by and
bs; and of b, and b, that are pure real. It may be seen by inspection of
Eqs. (182) and (176) that this is possible only if

g7 _ 055,
J34 Jss (186)
g3 _ g,
Ga4 Jes
However,
Rib; = 1033 (ae + 9 35)
X J33
and

bs = gss (as + gss ae)
gss

are eigenvectors of S with the same eigenvalue. Either a; and a; are
independently eigenvectors of S, which implies that
83 = 84 = 85 = 8,
or else
gss _ 933, (187)
gss 34

As usual the minimum condition on the eigenvalues is the one that
will be assumed. Combining Eqs. (186) and (187),

e
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g3z = T ga, l (188)
gss = T Gse. ]

In a similar way,
a3z = F Gas, (189)
Te5 = + Gss.

By the utilization of Eqs. (188) and (189), the b’s may be redefined,
without loss in generality, as

b, = a,
b2 = dg,
bs = as + a,,
by = a3 — ay
b; = as + a,
be = a; — a,,

(190)

where
Sbk = Skbk,
83 = 8,
S4 = 8Ss.
The eigenvectors given in Eqgs. (190) are not pure real. However a
pure real set may be chosen. Let
e = b; = a,
€y = ay,
e; = by 4+ by =as; + a; + a; + a,,
e, b4+b6=aa_a4+as—a61

il

it

&l

e; J (3*b5)=7‘7;(33+a4—as‘“as);

es = i (b4 — b \/— (a; — a4 — as + aq).

From Eq. (176) the e’s may be seen to be

31

1 1 2 2
1 — 2 —2
1 1 —1 -1
Gqi=1y T - =T &= b
1 1 —1 —1
1 —1 —1 1
0 0
0 0
95= 1 e(;= 1
11’ -1}
—1 -1
—1 1
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It may be seen by inspection that the e’s are mutually orthogonal. The
eigenvalue equation

Sek = 5,8,
may be written as
ST = TS,
where
si 0 0}
0 s 0. 0
0 S3 ‘
Sqg= | R
E S 0 0
0 0 s O
; 0 0 84
The matrix T has the vectorse, . . . egs(normalized to unity) as columns.
Sinee its columns are all mutually orthogonal, T is an orthogonal matrix
and
T =T,
Therefore,
a B yidé v @&
B a sy & v
y 8 aiff v 8
S=TS,T=1{ v [
6 v Bla & v
Yy & vis a B
by by B e
where
o = g(s1 + 8o + 285 + 2s4),
B = %(Sl — S2 + 283 - 284),
vy =w(s1+ 52 — 85— 34),
6 = (s1 — 82 — 83+ s4).

Tt is seen that the spur of S is the sum of the eigenvalues, in compliance
with Theorem 8. It should be noted that

S = Sle,
a condition that can hardly be said to be obvious from an inspection of

Fig. 12-32. That condition
Si3 = Sis

is necessary can, however, be seen by inspection of the figure.
There are several special cases of interest. First assume that the
junction is matched (i.e., « = 0). This requires that

81+82+2(83+S4) = 0.
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It is apparent that this condition is not sufficient to determine com-
pletely the power division. Consider then the following cases.

fa=0,
Case 1: {ﬁ=0-

This requires that s; = 2s3, which is impossible, since |s;] = 1.
=0
2. ¢ ’
Case [7 _o
This requires that

B = ‘5’(31 + 2s3),

6= %(Sl - Ss),

or clearly
1z [8 z3,
0= =3
since |s;] = |ss| = 1.
Yo . a = 07
Case 3: 5 — 0.

This requires that
28y + 385 + 84 = 0,
281 + 83 + 384 = O,

which is possible only if

81 = 83 = — 8 = —8
Then
Y = Oy
8] = 1.
ﬁ = 8,

Stated in words, if the junction is matched in such a way that there is no
coupling between terminals (1) and (6), then all the incident power is
transmitted out the arm opposite the one into whizh it is injected.

Case 4: For this case, relax the condition that the junction be matched,
but let

vy =0.
This requires that
s1+ 82— 83— 84 =0.

This equation can be satisfied in three distinet ways:

1.81=—82] a=0

S3 = —384 v = 0.
2. 81 = 83 } §=20

Sz = 84 v = 0.
3. 8 = 84 } 5= —28

Sy = 83 vy = 0.




476 THE SYMMETRY OF WAVEGUIDE JUNCTIONS  [Skc. 12:28
Case 5:6 = 0.
This requires that
Ny — Sp — N3 + Sy = 0.

This equation, too, can be satisfied in three distinet wayvs

1. 51 = s ] 8=0
S3 = S4 ] 5 = 0.
2. 81 = 83 6 =0
Se = 84 } v = 0.
3. 51 = —sy 6 =10
Sg = — &3 ‘ vy = —2a.

FREQUENCY DEPENDENCE OF SYMMETRICAL JUNCTIONS

12-28. The Eigenvalue Formulation.—From Eq. (5:126), the rate of
change of impedance or admittance matrices with respect to angular
frequency is given by

iZ = 4W (191)
or
eY'e = 4jW,
where
,_uZ
VARES 7
, _dY
Y ad (E}

and W is the total average electromagnetic energy in the junction when
excited by i or e which are assumed to be pure real. In a similar way
the rate of change of the scattering matrix S is given by

aS*S'a = —2jW, (192)
subject to the condition that the incident wave vector a satisfy
a = e#S*a* (193)

for some real 8.

The application of these equations directly to the impedance, admit-
tance, or scattering matrices leads to rather complicated results but the
eigenvalue formalism greatly simplifies everything. Assume that

Zak = Zpdyp,
Yak = YA, (194:)
Sak = S;djy
where
L 1+
2y = U = 1 — S (195)

and a, are pure real, orthogonal, and normalized to unity. It should be
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noted that a; is a permissible wave column vector for Eq. (192), since Eq.
(193) is satisfied by a; with
ef = s
Substituting in Eq. (192) and making use of Kqs. (194),
4,5*S’a;, = —2W,,

a8a, = —2jWkSk. (196)
If Eq. (194) is differentiated with respect to frequency, the result is
S’ak + Sa;c = sLak + S}\-ai. (197)

Many of the junctions that have been considered have enough symmetry
so that a; is completely determined by symmetry. In this case a is
independent of frequency and Eq. (197) becomes

S'a, = sja;. (198)

Equation (198) is satisfied in the case of the symmetrical Y-junction
but is not satisfied in the case of the shunt T-junction. Only those
examples for which Eq. (198) is satisfied will be considered in this section.

Since §’ and S have the same eigenvectors, they commute. This may
be seen as follows

Sa; = sy
S’Sak skS’ak = sks;ak
S;Skak = s,’cSak = SS;cak = SS’ak,
(8’S — SSa, = 0.
Since the a;’s form a complete set, Eq. (199) is satisfied for any vector
and hence

il

(199)

i

i

§’'S — 8§ =0.
If Eq. (198) is substituted in Eq. (196), it is seen that
S;Ic = —2jWkSk. (200)
This equation is important. It can be written
d .
E» Ins, = —2W,
or
dér
T = 2Wy, (201)
where
S = erx,

Since W) is the stored energy associated with the eigenvector a and is
positive, the phase angle ¢, always decreases with frequency. Since a,
is normalized to unity, the total incident power on the junction is

P =1}3%. =1 watt.
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Equation (201) may be written

@ﬂ__(EV_k.
dw P

Equations (194) and (196) may be written as

SA = ASd,
S’'A = AS),
where A as usual has the vectors a; as columns and
S 0 0 -
0
0
Sd =
Sn
0 0o
0
0
S, =
S:&
Equation (200) becomes
S:i = _2]‘std)
where
Wy 0 0«
0

Wy

bl

[Swc. 12-28

(202)

(203)

(204)
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Substituting Eq. (204) in Eq. (203), there results

S'A = —2jAW.S;,
8 = —2AW,AASA (205)
—2jWS,

where _
W = AWdA.

It should be noted that S’, S, and W all have the same eigenvectors
and hence commute with each other.
In a completely similar way Eq. (191) becomes

al'a; = 4jWk (206)

Again assuming that symmetry is sufficient to make a, independent of
frequency, a; is an eigenvector of Z’ and Eq. (206) becomes

2 = 4W,, (207)

where z;, is the eigenvalue of Z’. Note that —jz} is always positive.
Z’ is obtained in a way completely analogous to that of Eq. (205) as

7' = 4AW,A = 4jW. (208)

It should be pointed out that the Wy of Eq. (207) is different from the
W, of Eq. (200), since an eigencurrent normalized to unity is physically
different from a unity eigenwave. The rate of change of ¥ may be
determined in a completely analogous way.

12.29. Wideband Symmetrical Junctions.—A junction is said to be
wideband when the power distribution by the junction is insensitive to
frequeney. The wideband junction is an ideal that is seldom achieved.
It is possible, however, to state the conditions under which a junction is
wideband. 1If, in Eq. (205), W has the form

W = Wo(w)l, (209)

then the modulus of each element of S is independent of frequency, or
the junction is wideband. The necessary and sufficient condition for W
to have the form of Eq. (209) is for W, of Eq. (196) to satisfy

IV}; = IVo(w)

Stated in words, this requires that the electromagnetic energy stored in
the junction be the same for all the various eigensolutions.
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E-plane bifurcation of, 293
energy density in, 50-54
height of, change in, 188
iris-coupled, short-circuited, 231-234
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